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Abstract:  Modelling of the brazed assembly taking account the presence of a brazed joint which is considered as a 
singularity is proposed. The model is based on the eXtended Finite Element Method (X-FEM) coupled with the 
matching asymptotic development method (DAR). We consider the behavior of the brazed assembly in two problems 
separately: mechanical and transient thermal problems. The approach proposed by the DAR method is based on to 
construct the enriched functions in the X-FEM framework. The fundamental formulation of our coupling is given and 
illustrated in the 1D case of the brazed assembly. The accuracy of the results obtained by the coupling is evaluated by 
comparison with the analytical solutions (in the mechanical problem) and with the solutions of the quadrupole method 
and of the commercial FEM code (ABAQUS) (in the thermal problem). 
 
Key-Words: eXtended Finite Element Method (X-FEM), matched asymptotic development method (DAR), brazed 
assembly, brazed joint 
 
1   Introduction 
 
In the most recent years, brazing has been used as an 
efficient and appropriate technique of assemblage, 
especially in the sector of tooling such as the fabrication 
of moulds [1]. In these applications, the brazed assembly 
must withstand high thermomechanical solicitations. So 
its thermomechanical behavior is a critical point that 
requires extensive R&D efforts.  
In the modelling of the behavior of brazed assemblies 
taking account the presence of a brazed joint, we meet 
the difficulties which are usually encountered because of 
its singularity in the whole assembly. Previously, the 
brazed joint is either ignored or modelled with an extra 
fine mesh in the zone around brazed joint [2]. With the 
latter measure, on the one hand, the mesh must conform 
to the joint and on the other hand, the computational cost 
can become enormous. In this situation, we propose the 
coupling of the eXtended Finite Element Method (X-
FEM) and the matching asymptotic development method 
(DAR) to overcome these difficulties. 
The first method X-FEM is based on the idea that the 
standard finite element approximation space is enriched 
with specially tailored functions called enriched 
functions to capture the singularity of a problem. 
Concretely, within the X-FEM, the elements that 
incorporate a section of a singularity can be attributed 
the enriched interpolation functions. At the beginning, 
the X-FEM has been used for the problems which 
contain the discontinuities (cracks) with specific 
enriched functions derived from the fracture mechanics 
[3]. Then, this method has been applied to the problems 
of implicit interface [4], holes or inclusions [5].  

The second method DAR provides us the approach of 
solution of the singular problem at two scales: 
macroscopic (or exterior solution) and microscopic (or 
interior solution in the “boundary layer”) [6]. This 
method has been firstly applied to the problem of fluid 
mechanics. After, the DAR has been used in many 
mechanical sectors, such as: composite materials [7], 
assemblies of materials [8]… 
At the first step, the coupling of two above methods is 
considered in the modelling of the mechanical behavior 
of the brazed assembly [9]. This tendency of coupling 
gives us the promising signals. In the framework of the 
X-FEM, the enriched functions are chosen to represent 
as closely as possible the behavior of the singularity. In 
other words, they should be based on the information 
which is known a priori about the behavior of the 
domain which contains the singularity. In our idea of the 
coupling of DAR and X-FEM, this information is 
exploited from the solutions of the DAR method. 
In a second stage, we continue to apply the coupling of 
X-FEM and DAR to treat the transient thermal behavior 
of a brazed assemblage.  
In this paper, the X-FEM formulation and its coupling 
with the DAR method are detailed for the one 
dimensional case of the brazed assembly. In order to 
evaluate the feasibility and the accuracy of the coupling, 
we compare the results with those obtained by the 
analytical methods [10] and by the finite element 
commercial code ABAQUS.  
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2   Problem Formulation 
 
The outline of this paragraph is as follows: in section 
2.1, we consider the mechanical problem with the 
subsections about the approach of DAR method, the 
formulation of X-FEM and the construction of the 
enriched functions of X-FEM by using the above 
solutions of DAR. In section 2.2, let us pass into the 
thermal problem. We present the formulation of the 
finite element method (FEM) and then of X-FEM which 
serve the transient thermal problem. The solutions of 
DAR and the construction of the enriched functions of 
X-FEM by coupling with the solution obtained by the 
DAR in the transient thermal problem are also presented. 
For the role of reference for the coupling of X-FEM and 
DAR in the thermal problem, the quadrupole method is 
mentioned.  
 
2.1 Mechanical problem 
 
2.1.1 Approach of DAR method 
 
The DAR method is used to resolve the problem of 
singularity. This singularity is characterized by a small 
parameter ε . For instance, in our model, we introduce 
the ratio /e Lε =  where e  and L  denote the thickness 
of brazed joint and of sheet of base material respectively 
as the small parameter.  
There is a zone around the singularity where the solution 
of problem is perturbed. We call it the boundary layer. 
The DAR method allows us to find the solution of the 
problem in the form of two asymptotic developments of 
the small parameterε  (Fig. 1).  
The first development, exterior, provides us the behavior 
in the zone “far” from the singularity or valid for the 
exterior domain: 

2
0 1 2( , ) ( ) ( ) ( ) ...f x f x f x f xε ε ε= + + +                        (1) 

In the above expression, 0 ( )f x  is the solution of the 
unperturbed problem in which the domain doesn’t 
contain the singularity. The part 2

1 2( ( ) ( ) ...)f x f xε ε+ +  
called the perturbation stands for the correction taking 
into account the singularity and called. When 0ε → , 
the perturbation vanishes and we return to the 
unperturbed solution. In this situation, the small 
parameter is a determining factor in physics to reduce 
the considered mathematical model to a simpler model 
whose solution is an approximation of the solution of the 
initial model. 
The second development, interior, is valid “near” the 
singularity or inside the boundary layer. 

% % %2
0 1 2( , ) ( ) ( ) ( ) ...f x f x f x f xε ε ε= + + +                   (2) 

Here we apply the stretch variable % /x x ε=  to consider 
the behavior in the vicinity of the singularity. 
There is a intermediate zone where two developments 
are matched by the matching condition: the interior 
representation of the exterior representation is equal to 
the exterior representation of the interior representation. 

0
lim  (  development) = lim  (  development)
x x

Outer Inner
→ →±∞%

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Two developments of DAR method  
 

The brazed assembly is made of two sheets of base 
materials 1 and 2 (two sub-domains 1Ω  and 3Ω  
respectively) which are assembled by the brazed joint 
using the filler metal (sub-domain 2Ω ). In our study, we 
only consider the case 1D of this model which is shown 
in Fig. 2. 

 
 
 
 
 
 
 
 

Fig. 2 Model 1D of the brazed assembly  
 

Because of its small thickness, different mechanical and 
thermal properties compared to those of the base 
materials, the brazed joint is considered as a singularity. 
The exterior field of displacement is given in 1( )Ω −  and 

3( )Ω +  respectively in the form of eq. (3):  
0 1( ) ( ) ( )u x u x u xε ε= +m m m            (3)  

Where 0 1,u um m   denote the two first exterior terms of  

DAR. 0um  characterize the solution of the unperturbed 

problem (without 2Ω ) while 1uε m  stand for the 
perturbation taking into account the brazed joint. 
The brazed joint is zoomed in when applying a change 
of variable /y x ε= . The zone of the brazed joint is 
divided into two parts: 

Singularity  

Boundary layer – Interior domain

Exterior domain

(Exterior development) 

Base material 1 Base material 2Filler 
metal 

1Ω 2Ω  3Ω  

x
ex sx0 

(Interior development) 

Intermediate zone 

(Matching condition) 
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2

2

: / 2 0 / 2 0
: 0 / 2 0 / 2

e x L y
x e y L

−

+

⎧Ω − ≤ ≤ ⇔ − ≤ ≤
⎨
Ω ≤ ≤ ⇔ ≤ ≤⎩

                      (4) 

The interior expansion in these two parts is expressed in 
the form: 

2
0 1( ) ( ) ( )v y v y v yε ε

Ω
= +

m
m            (5) 

Where 2
0 1,v v

Ωm

 denote the two first interior terms of the 

DAR for the two domains 2 ( )−Ω −  and 2 ( )+Ω + . The two 
developments are matched with the following condition 
at their respective limits: 

0
lim lim
x y

u vε ε

→ →±∞
=                                                            (6) 

Each term of the two developments is determined with 
the simultaneous utilization of the matching condition 
above and the classical equations of the model 
(equilibrium equation, constitutive law, continuity 
condition):  

0 3 1 3

2 2

0 1 1 3

2 2

1 3 1
2

2 2

1 3 1
2

2 2

1 1 3 2 3 1 2 2 1 3

( )

( )
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−
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−
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Ω
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=

⎡ ⎤−
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⎣ ⎦

 

where 
1 3

2

,  - Young's modulus of base materials
 - Young's modulus of filler metal
,  - coordinates of two extremities of domain
, - displacements of two extremities of domain

e s

e s

E E
E
x x
u u

 

 
2.1.2 Formulation of X-FEM 
 
In the modelling of the domain which contains a 
singularity as the case of brazed assemblage by FEM, we 
have to ensure the conformity of mesh with the joint. 
Furthermore, the mesh around the joint must be refined. 
These create the burdensome cost of calculation.  

Thanks to X-FEM, we can resolve these problems. 
Within the X-FEM framework, an arbitrary mesh can be 
applied. The field of solution of the domain that contains 
brazed joint is decomposed into two parts: a standard of 
finite element approximation (linear) and enriched part 
to account for the specific singular behavior. We 
introduce some particular functions called enriched 
functions to capture the characteristic of the brazed joint. 
These functions are embedded for the nodes of mesh 
which are in the vicinity of joint. We call them the 
enriched nodes. 
The discretized approximation of the displacement field 
is given by: 

1 1
( ) ( ) ( ) ( )

cla enr

Nn Nenr
h

i i k k k
i k

u u

u x N x u N x x bψ
= =

= +∑ ∑
14243 144424443

                    (7) 

where Nn  is the total number of nodes, Nenr  is the 
number of enriched nodes, ,i kN N  are the shape 
functions, kψ  is the enriched function, iu  is the nodal 
displacement and kb  is the additional degree of freedom.  
In the formula (7), we distinguish two different parts: 

clau  is the classical part which presents the behavior of 
domain without the joint, while enru  is the enriched part 
that is added to represent the behavior of the joint. 
The weak form of boundary value problem consists: 

( ) : ( ) . .
t

u v d b vd t vdσ ε
Ω Ω Γ

Ω = Ω+ Γ∫ ∫ ∫            (8) 

where σ  is the Cauchy’s stress, ε  is the strain, b is the 
body force per unit volume, ,u t  are the prescribed 
displacement and the stress vector on the boundary of 
domain 
By substituting (7) in (8) and applying several changes, 
we obtain the governing equation: 
[ ]{ } { }K q f=              (9) 

where { }q  is the vector of generalized nodal 

displacements, { }f is the vector of exterior force, [ ]K  is 
the matrix of rigidity given by eq. (10). 

[ ] [ ][ ][ ]
1

1

K B D B
e

e

Ne
T

e

Ne

ij k i j
e

d

K E N N d

= Ω

= Ω

= Ω

⇔ = ∇ ∇ Ω

∑ ∫

∑ ∫
uuuuruuuur

         (10) 

where [ ]B  is the strain-displacement matrix or the 

matrix of gradients, [ ]D  is the Hooke’s tensor. 
The element approximation of displacement field for 
element (IJ) is given by eq. (11) which can be 
synthesized in the matrix form eq. (12) 
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( )

, ,
( ) ( ) ( ) ( )IJ

i i i i i
i I J i I J

u x N x u N x x bψ
= =

= +∑ ∑               (11)  

{ } [ ] { }( )( ) ( )u N . qIJIJ IJ=                                              (12) 

where [ ]( )N IJ
 is the matrix of generalized shape 

functions. 
In our case, we distinguish two types of elements: 
standard and enriched.  
All elements lie in the enriched domain which is defined 
by a critical radius cd are enriched. The center of this 
enriched domain is determined in the middle of brazed 
joint. The matrix [ ]( )N IJ

 and the vector of generalized 

nodal displacements { }( )q IJ
 of enriched element are 

given by: 

[ ] [ ]( )N ( ) ( ) ( ) ( ) ( ) ( )IJ
I I I J J JN x N x x N x N x xψ ψ=

{ } { }( )q IJ T
I I J Ju b u b=                                    (13) 

The matrix [ ]( )N IJ
 and the vector of generalized nodal 

displacements { }( )q IJ
 of standard element are in the 

habitual form: 

 
[ ] [ ]
{ } { }

( )

( )

N ( ) 0 ( ) 0

q 0 0

IJ
I J

IJ T
I J

N x N x

u u

=

=
                           (14) 

 
2.1.3   Construction of the enriched functions of X-
FEM by using the solutions of the DAR method 
 

 
 

Fig. 3 Idea of coupling X-FEM and DAR 
 

The determination of enriched functions in (7) plays the 
most essential role within X-FEM. These functions have 
to represent in the appropriate manner the behavior of 
whole domain taking into account the presence of the 
singularity. For this purpose, it is preferable that we 

know a priori the information about the behavior of the 
domain which contains the singularity. In our work, we 
are confident of using the solutions of DAR method to 
acquire this information. The idea of coupling of X-FEM 
and DAR is presented in Fig. 3. 
The enriched domain contains all the enriched nodes 
around the brazed joint (on the left and on the right). In 
this domain, we distinguish three types of enriched 
functions: the interior ones int int,left rightψ ψ  are valid inside 
the joint; the exterior ones ,left right

ext extψ ψ  are used outside 
the element which contains the joint and the functions of 
transition ,left right

trans transψ ψ  are interpolated between the two 
precedent types.  
 

 
 

Fig. 4 Relation between the solutions of DAR method 
and the enriched functions of X-FEM 

 
The exterior enriched functions are calculated from the 
exterior solutions of DAR and they vanish outside the 
enriched domain 

ed
1

1 1

ef
1

2 2

( ) 0
( ) ( )

( ) 0
( ) ( )

left
ext
left
ext

right
ext
right
ext

x x
x x u x x

x x
x x u x x

ψ
ψ ε

ψ
ψ ε

−

+

= =⎧
⎨ = = =⎩

= =⎧
⎨ = = =⎩

                                  (15) 

The interior enriched functions are determined by using 
the interior terms of DAR 

2

2

1
int

1
int

left

right

v

v

ψ ε

ψ ε
−

+

Ω

Ω

⎧ =⎪
⎨

=⎪⎩
                                                            (16) 

To link the exterior and interior functions, we introduce 
the enriched function of transition 

1 1

ej1 int ej1

2 2

ej2 int ej2

( ) ( )
( ) ( )

( ) ( )
( ) ( )

left left
trans ext
left left
trans

right right
trans ext
right right
trans

x x x x
x x x x

x x x x
x x x x

ψ ψ
ψ ψ

ψ ψ
ψ ψ

⎧ = = =⎪
⎨ = = =⎪⎩
⎧ = = =⎪
⎨ = = =⎪⎩

                            (17) 

where ed ef,x x are two nodes of extremity of the enriched  
domain, 1 2,x x  are two enriched nodes the closest to the  
joint, ej1 ej2,x x  are two ends of the brazed joint. 
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2.2 Thermal problem 
 
The formulation of FEM and then of X-FEM for the 
transient thermal problem contains a few remarks which 
are produced of the dependence of the temperature into 
the time. So before attacking the application of the 
coupling of X-FEM and DAR for this problem, we deal 
its formulations of FEM and of X-FEM. 
 
2.2.1 Formulation of FEM 

 
                                      

 
 

      Fig. 5 Domain Ω  with the boundary conditions  
 

Considering a habitual case of a body Ω  with the 
boundary conditions in 1Γ  and 2Γ  as in Fig. 5, the 
strong form of the transient thermal problem writes for 
the temperature ( , )T x t  in the form of the equation set 
(18): 

] [

] [
] [

0
1

2

( )  dans 0,

( ,0)
 sur 0,

.  sur 0,
imp

imp

Tc div T t
t

T x T x
T T t

T n t

ρ λ ω

λ ϕ

∂⎧ − ∇ = Ω×⎪ ∂⎪⎪ = ∀ ∈Ω⎨
⎪ = Γ ×
⎪
− ∇ = Γ ×⎪⎩

uuur
&

uuur r

                      (18) 

where ρ  is the mass density, c  is the heat specific 
capacity, ω&  is the internal source and λ  is the thermal 
conductivity. 
The weak form of the problem (18) is given by: 

2

. imp
Tc vd T vd vd vd
t

ρ λ ω ϕ
Ω Ω Ω Γ

∂
Ω+ ∇ ∇ Ω= Ω− Γ

∂∫ ∫ ∫ ∫
uuuruur

& (19) 

To determine the temperature field solution of (19), we 
partition the domain Ω  by a set of Ne  sub-elements 

eΩ . These sub-elements are connected by Nn  nodes.  
The temperature is approached by the discretized form: 

1
( , ) ( ) ( )

Nn

i i
i

T x t N x T t
=

= ∑                                                   (20) 

where iN  are shape functions and iT  are the nodal 
temperatures of the nodes. 
By substituting (20) in the weak form (19) and applying 
a few combinations and eliminating the test functions, it 
is classical to obtain the matrix form: 

[ ] [ ]{ } { }TC K T = Q
t

∂⎧ ⎫+⎨ ⎬∂⎩ ⎭
         (21) 

where { }T is the vector of unknowns iT , [ ]C  is the 

matrix of capacity, [ ]K  is the matrix of conductivity, 

{ }Q  is the vector of charge. 
The components of these matrix and vectors are 
calculated as follows (the reader can refer to [11] for 
more details about the FEM formulation): 

[ ] [ ][ ]

[ ] [ ][ ][ ]

1 1

1 1

C N N

K B D B

e e

e e

Ne Ne
T

ij i j
e e

Ne Ne
T

ij i j
e e

c d C cN N d

d K N N d

ρ ρ

λ

= =Ω Ω

= =Ω Ω

= Ω⇔ = Ω

= Ω⇔ = ∇ ∇ Ω

∑ ∑∫ ∫

∑ ∑∫ ∫
uuuuruuuur

{ } [ ] [ ]
2

2

1

1

Q N N
e e

e e

Ne
T T

imp
e

Ne

i i imp i
e

d d

Q N d N d

ω ϕ

ω ϕ

= Ω Γ

= Ω Γ

⎛ ⎞
⎜ ⎟= Ω− Γ
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟⇔ = Ω− Γ
⎜ ⎟
⎝ ⎠

∑ ∫ ∫

∑ ∫ ∫

&

&

 

To approach the solution of the system (21), we must 
implement a scheme of temporal derivative. In literature, 
there are several schemes which give us the 
approximation in variation of the time. Here, we choose 
the scheme of two steps time of Crank-Nicholson. The 
equation (21) is translated into the relation of recurrence: 
[ ] [ ] { } [ ] [ ] { }

{ } { }

1

1

C C1 1K T K T
2 2

1 1Q Q
2 2

m m

m m

t t
+

+

⎛ ⎞ ⎛ ⎞
+ = − +⎜ ⎟ ⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠

+ +

       (22) 

{ } 1T m+
 can be calculated by assuming that { }T m

 is 
known.  
In the above expression, the step time t∆  must satisfy 
the condition (23) to ensure the stability of the resolution 
method: 

2

1 1
6 ( ) 2

ta
x
∆

≤ ≤
∆

                                                              (23) 

where a  is the thermal diffusivity ( /a cλ ρ= ), x∆  is 
the distance between nodes for element near surface with 
highest temperature gradient. 
 
2.2.2 Formulation of X-FEM 
 
From the expression of FEM in the previous section, we 
extend to the formulation of the X-FEM for the thermal 
problem. Let’s consider now the domain Ω  which 
contains a singularity, a brazed joint in our study. 
Because the position of the joint is fixed in the domain, 

Ω  

2Γ  
impϕ ϕ=

1Γ  impT T=  
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we accept that it is considered as a singularity within the 
meaning "spatial" and "no temporal".  
Instead of using a mesh which conforms to the brazed 
joint as in FEM, thanks to X-FEM, we can apply an 
arbitrary mesh that can overlap the singularity. 
Moreover, we introduce the particular functions called 
enriched functions to capture the characteristic of the 
brazed joint. These functions are embedded to the nodes 
of mesh which are in the vicinity of joint. We call them 
the enriched nodes.  
The discretized approximation of the temperature field is 
then given by: 

1 1

( , ) ( ) ( ) ( ) ( ) ( )

cla enr

Nn Nenr

i i k k k
i k

T T

T x t N x T t N x x b tψ
= =

= +∑ ∑
1442443 144424443

       (24) 

In the expression (24), the meaning of grandeurs is 
identical to the eq. (7) except iT  is the nodal 
temperature. 
By substituting (24) in weak form (19), we get the same 
matrix form as (21) but with different matrix and vectors 
as in the eq. (25): 

{ } { }
*

* * * *TC K T = Q
t

⎧ ⎫∂⎡ ⎤ ⎡ ⎤+⎨ ⎬⎣ ⎦ ⎣ ⎦∂⎩ ⎭
        (25) 

In eq. (25), *X  indeed represents a quantity which is 
calculated within X-FEM to distinguish this magnitude 
X  in FEM. The formulation of quantities in the 

equation (23) is given by: 

{ }*T  = 
⎧ ⎫
⎨ ⎬
⎩ ⎭

i

i

T
b

 

* * *

1
C N Nρ

= Ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= Ω⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ ∫
e

Ne T

e
c d  

[ ]

*

* * *

1

*
, , , ,

N

K B D B

B ( ) ( )

ψ ψ

ψ ψ

= Ω

⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= Ω⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦

∑ ∫
e

i i i j j j

Ne T

e

i x i i x j x j j x

N N N N

d

N N N N

 

{ }
2

* * *

1
Q N N

e e

Ne T T

imp
e

d dω ϕ
= Ω Γ

⎛ ⎞
⎡ ⎤ ⎡ ⎤⎜ ⎟= Ω− Γ⎣ ⎦ ⎣ ⎦⎜ ⎟

⎝ ⎠
∑ ∫ ∫&  

In the same way as FEM, to overcome the temporal 
derivate in (25), we apply Crank-Nicholson’s scheme.  

{ } { }

{ } { }

* *
1* * * *

1* *

C C1 1K T K T
2 2

1 1Q Q
2 2

m m

m m

t t
+

+

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎡ ⎤+ = − +⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠

+ +

(26) 

The resolution of (25) becomes a recurrence equation of 

{ } 1*T
m+

 function of { }*T
m

 as in eq. (26). 

 
2.2.3 Coupling of X-FEM and DAR in the 1D 
thermal problem 
 
2.2.3.1   Approach of DAR method 
 
Let’s consider the model of a brazed assembly in the 
thermal problem (Fig. 6). Because the width of 
assemblage is very greater than its thickness, we can 
return to the 1D model of heat transfer problem. 
 

 
 

   Fig. 6 One-dimensional thermal model  
of brazed assemblage 

 
By applying the DAR method as we did in the 
mechanical problem, the temperature is determined at 
two scales: exterior and interior. The role of temperature 
field in the thermal problem is identical with that of the 
displacement field in the mechanical problem. 
The exterior temperature fields in 1( )Ω −  and 3 ( )Ω +  
are given respectively by: 

0 1( ) ( ) ( ) ...T x T x T xε ε= + +m m m          (27) 
where the exterior terms are defined by: 
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with 3 1 3 2 3 1 2 4 1 32 ; s ec c x xλ λ λ λ λ λ λ λ= − − = −  
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The interior temperature fields are respectively given in 
2
−Ω  and 2

+Ω  by: 
0 1( ) ( ) ( ) ...T x y yε τ ετ= + +m m                                         (28) 

where the interior terms are defined by: 

2

2

0 1 3

4

1 3 31
1 2

2 4 4

1 3 31
2 3

2 4 4

( ) 2 ( )
2
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s e e s
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ss e
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c

L T T x cy
c L c

y x cL T T
c L c

λ λτ

λ λτ λ λ
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λλτ λ λ
λ

−

+

Ω

Ω

⎧
⎪
⎪
⎪ ⎡ ⎤⎪
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⎣ ⎦⎪
⎪ ⎡ ⎤⎪ ⎢ ⎥⎪ ⎣ ⎦⎩

−=

−= + − +
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2.2.3.2   Construction of the enriched functions of X-
FEM by using the solutions of the DAR method 
 
We apply the same strategy of mechanical problem to 
construct the enriched functions of X-FEM from the 
solutions of DAR. 
 

 
 

Fig. 7 Determination of the enriched functions of X-
FEM for the thermal problem 

 
The determination of these enriched functions from the 
solutions of DAR method is based on the conditions 
below: 

2

2

ed
1

1 1

ef
1

2 2

1
int

1
int

1 1

ej1 int ej1

( ) 0
( ) ( )

( ) 0
( ) ( )

( ) ( )
( ) ( )

left
ext
left
ext

right
ext
right
ext

left

right

left left
trans ext

leftleft
trans

tr

x x
x x T x x

x x
x x T x x

x x x x
x x x x

ψ
ψ ε

ψ
ψ ε

ψ ετ

ψ ετ

ψ ψ
ψ ψ

ψ

−

+

−

+

Ω

Ω

= =⎧
⎨ = = =⎩

= =⎧
⎨ = = =⎩
⎧ =⎪
⎨

=⎪⎩
= = =⎧

⎨ = = =⎩

2 2

ej2 int ej2

( ) ( )
( ) ( )

right right
ans ext

rightright
trans

x x x x
x x x x

ψ
ψ ψ

= = =⎧
⎨ = = =⎩

                            (29)                                                                                                  

 
 

2.2.4 Quadrupole method 
 
To validate the results we obtained, several methods 
could have been used such as the conservative averaging 
method [12] or the method based on the Papoulis Berg 
method [13] but we used the quadrupole method. 
In the thermal research, the quadrupole method 
developed early on [14, 15] has been successfully used 
to solve transient thermal problems such as for instance 
heat transfer in cutting tools [16] or in stratified moulds 
[17]. In this work, we exploit it to obtain the reference 
for our coupling of X-FEM and DAR. By the way, we 
recall some features of this method.  
The formulation of quadrupole method provides us with 
the relation between the input temperature-heat flux 
vector at the front side and the output vector at the back 
side through a transfer matrix M : 
θ θ
φ φ
⎛ ⎞ ⎛ ⎞⎛ ⎞

=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠123

( , ) a b ( , )
( , ) c d ( , )

e s

e s

M

x p x p
x p x p

                               (30) 

where p is the Laplace variable, a, b, c and d are the 
components whose forms are interpreted below , θ  and 
φ  are temperature and heat flux respectively in the 
Laplace’s space. 
Fig. 8 below shows the representation of quadrupole 
method. 

 
 

Fig. 8 Representation of quadrupole method 
  
In our case, the brazed assembly contains three layers: 
plate - joint - plate and the heat flux is orthogonal to the 
layers. We consider the brazed assembly as the 
association in cascade of three quadrupoles (Fig. 9).  

 
 

Fig. 9 Association in cascade of three quadrupoles 
Then the transfer matrix is the product of three matrices: 

3

1
i

i

M M
=

=∏                 (31) 

Each matrix iM  is calculated by: 

1cosh sinh
sinh cosh

∆⎛ ⎞
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i i i

u u
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where  , , /i i i i i i iu k L k k p aλ= ∆ = =  

,  λi ia are respectively the thermal conductivity and 
diffusivity of the ith layer. 
In eq. (30), two terms are normally determined from the 
boundary conditions. Then we calculate the remaining 
unknown. When these two vectors are known, it is easy 
to deduce the vector of temperature and heat flux at any 
point in the domain. We have several formulations 
(Stehfest [18], Hoog [19],…)  to return to temporal space 
to get the functions that depend on time t  from the 
functions that depend on the Laplace variable p . 
 
3   Problem Solution 
 
3.1 Mechanical problem 
 
Let us consider the 1D model of the brazed assembly as 
depicted in the Fig. 2. Two base plates which are made 
of steel are brazed together by the nickel - silver alloy as 
the filler metal. The characteristics of the components of 
this assemblage are given by: 
 

 Plate Joint 
Thickness (m) 0.04995  410−  
Young’s modulus ( )GPa  200  74  

 
Tab. 1 Used data for the mechanical problem  

 
The boundary condition at the left extremity of domain 
is embedded, while at the right, a displacement 

* 0.05U mm=  is applied. 
An analytical calculation and the solution of DAR are 
chosen as reference for the result of the coupling of X-
FEM and DAR (Fig. 10).  
 

 
 

Fig. 10 Solution of displacement of the brazed assembly 
and its zoom around the joint 

 
The solution of the coupling X-FEM and DAR is very 
close to that of reference. Through the brazed joint, there 
is a change of slope of displacement solution which is 
captured by the enriched functions. The maximal relative 
error between the coupling of X-FEM and DAR and the 
analytical model estimates 2.24 x 10-5 %. 
 
3.2 Thermal problem 
 
We consider the model of brazed assembly as Fig. 6. 
The conductivities and the diffusivities summarized in 
the table 2 below:  
 

  Plate      Joint 
Thickness (m) 0.04995  410−  
Conductivity ( / . )W m C° 15  370  

Diffusivity 2( / )m s  -63.98 x 10 41.061 x 10−

 
Tab. 2 Used data for the thermal problem 
 

We assume that the initial temperature is equal to zero 
for the whole domain: 

0 0iniT T C= = °           (32) 
The boundary conditions are the Heaviside temperature 
at the front side and the imposed temperature at the back 
side: 

- 
0 0

( )
100 0
° =⎧

= = ⎨ ° >⎩
e

C t
T x x

C t
 

- ( ) 0 0= = ° ≥sT x x C t  
 

 
 

Fig. 11 Profiles of temperature at the time 
50, 100,200,500,1000,2000st =  
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The temperature distribution is determined in the interval 
of time [ ]0, 2000=t s  with the constant step time 

5t s∆ = . The mesh contains 15 nodes, so 
7.69 ( )x mm∆ = . 

The characteristic time of the problem is calculated by: 
1

2 2 2

3.98 5 0.336
7.69c

a ta tt
x x

∆∆ ×
= = = =
∆ ∆

        (33) 

This value satisfies the condition of stability (23). 
The profiles of temperature at 

50, 100,200,500,1000,2000s=t  for the whole 
domain are presented in Fig. 11. ‘TXFDA’ and ‘TQuad’ 
denote the temperatures which are calculated by the 
coupling of X-FEM and DAR and the quadrupole 
method respectively. 
We have chosen several points (P1, P2 and P3) whose 
positions are indicated in Fig. 6 to represent the 
evolution of temperature and of heat flux as function of 
time.  
In Fig. 12, we compare the evolution of the temperature 
as a function of time at the point P2 which are obtained 
by two above methods and by the computational code 
ABAQUS (‘TABA’). 
 

 
 

Fig. 12 Evolution of temperature as a function of time at 
the point P2 

 
Fig. 13 presents the evolution of the function 
temperature - time at three points P1, P2 and P3. The 
symbols ‘TXFDA_Pi’ and ‘TQuad_Pi’ denote the 
evolutions of temperature at the point ( 1, 2,3)i i =  
which are obtained by the coupling of X-FEM and DAR 
and the quadrupole method respectively.  
Furthermore, we can see in this figure the error for each 
couple of curves:   
‘Err_Pi’ = ‘TXFDA_Pi’ - ‘TQuad_Pi’ 
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Fig. 13 Evolution of temperature as a function of time at 
several points and the error between the coupling of 

X-FEM+DAR and the quadrupole method 
 

In the figure 14, we can see the evolution of the function 
heat flux density - time at these points (P1, P2 and P3). 
Identically with the temperature, the labels 
‘FluXFDA_Pi’ and ‘FluQuad_Pi’ denote the evolutions 
of temperature at the point ( 1, 2,3)i i =  which are 
obtained by the coupling of X-FEM and DAR and the 
quadrupole method respectively. And we have also the 
error for each couple of curves: 
‘Err_Pi’ = ‘FluXFDA_Pi’ - ‘FluQuad_Pi’ 
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Fig. 14 Evolution of heat flux density as a function of 

time at several points and the error between the coupling 
of X-FEM+DAR and the quadrupole method 

 
In this example, we can see that the curves of 
temperature obtained by the coupling of X-FEM and 
DAR and by the quadrupole method are identical. 
Although at several first steps of time, there is a small 
gap, the results of two methods reach the coherence 
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rapidly with the increase of time. However, the 
evolutions of heat flux resolved by two methods show a 
difference. This can be explained by the accumulation of 
errors when the heat flux has been derived from the 
temperature. 
 
4   Conclusion 
 
The coupling of X-FEM and DAR is developed to model 
the behavior of brazed assembly. We apply it to resolve 
the mechanical and then the transient thermal problems 
of the one-dimensional model of brazed assembly. The 
key idea consists in the inspiration of the solutions of the 
DAR method in the construction of enriched functions in 
X-FEM. This trend of coupling between two methods 
has proved the feasibility and the accuracy.  
At the first stage, through the mechanical problem, we 
construct step by step the formulation of the coupling. 
The displacement solution obtained by this coupling is 
very coherent with the analytical solution and the 
solution of the DAR method itself. 
In the second stage, we apply the coupling of X-FEM 
and DAR for the problem more complicated: the 
transient thermal problem. And the strategy of coupling 
always shows its reliability. The profiles of temperature 
in the whole domain and the evolution of temperature 
and heat flux density in functions of time at several 
points of domain which obtained by this coupling are 
very close to the results of the quadrupole method and of 
ABAQUS model. 
These results encourage us to go on performing a two-
dimensional formulation and obtaining finally thermo-
mechanical response of the brazed assembly thanks to 
the coupling of extended finite element and matched 
asymptotic development methods.  
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