
 

 

Abstract—This article describes preparation and verification of 

particular part of the model for heat distribution. Presented 

improvement focuses on heat supplies proposal which is based on 

seeking and identification of days with similar outdoor temperature 

behavior. The model of distribution system for heat consumption was 

prepared but the main questions, for real system management as well 

as for simulation, still remain: When, how much and in what heat 

condition to deliver into the urban agglomeration? The first and 

simplest answer could be the similar conditions as we used yesterday 

or better, day alike the one we want to control now. The main task of 

heat supply systems is to maintain all needs associated with heat 

consumption. From the information we had got from previous 

(similar) day, the new control could starts. The idea is to make the 

model more precise and offer resources to improve existing control, 

for more accurate function. 
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I. INTRODUCTION 

HIS paper deals with approaches to improving Municipal 

heating network simulation model [12]. Model offers 

possibility to describe distribution and consumption of heat 

energy in the municipal heating systems. Behavior of water 

temperature in return line, mass flow and consumption can be 

trace. There are many different approaches for simulation 

models and operational optimization of heating networks [1]; 

[2] and heat-load modeling [8]. Our approach is to use data 

mining combined with simple model of heating network [11]. 

The adaptive parts of the model utilize real data measured in 

distribution systems to set up its internal structures for 

subsequent use in prediction and regulation.  

For our model, the chosen city was simplified and model 

can be trained on the real measured data [13]. The main aim of 

all experiments face the question: When, how much and what 

temperature to set-up for hot water supply. Several 

experiments, presented in this article lately, have confirmed 

importance of finding days whose outside temperature is close 

to one we are just need to control. Such, for “tomorrow” we 

need to know weather forecast to choose right interference on 

heating water temperature. And based on it also the database 

can be scan to select day with likely the same values. The 

found day becomes the base for “tomorrow” heat supply 

proposal. The expectations are that the data from that day are 

telling us consumption needs and also provide information 

about trace in time. 

Simulation and control can be described in these steps: 

 obtain weather forecast for day to propose, 

(More frequent updates and increased accuracy for a 

particular location is an advantage) 

 seek and choose best matching day from the past 

(Looking for days of ancient history has no sense, e.g. 

previous years, heating season, because the system is 

constantly changing. Days from the surrounding area 

should be preferred. It is also advisable to monitor the 

previous days, because if it is such a day following a 

significant change in the weather, the behavior of 

consumers is considerably in an unstable state) 

 train the model 

(Behavior of consumers is such nonlinear that better 

than trying to find a general function describing its 

behavior is to identify a particular period and model 

optimization for a given situation) 

 predict behavior for proposing day 

(System trained on a similar day can learn from any 

mistakes and optimize the management of individual 

variables to the optimal operation) 

 

II. MODEL IMPLEMENTATION 

The training experiments described below are based on real 

data measured by the heat producer and distributor company. 

The city about eighty seven square kilometers with about sixty 

seven thousand citizens has been chosen for setting up model 

[1] and identification of its parameters [12]; [13]. Location has 

been split into four parts to embrace the whole area, shown on 

Fig. 1. 

The simulation model basically contains two types of 

parameters: 

 static, e.g. length and diameter of the pipes, 

 variable. 

 

 
Fig. 1 Location split (4 parts with supply and return pipe lines) 

 

The variable parameters are covering variability of the 

system and are adapted by the evolution algorithms during 

model training. Those variables held information about 

amount of heat mass needed for particular time. The evolution 

algorithm used in this model is described in detail in [11]. 
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Lately, the location split was extended into twelve 

consumers. The principle of distance equal parts embracing 

the whole area has been kept. The virtual pipelines system was 

put more precisely by recalculating the pipes capacity and 

pipes diameters [13]. See fig. 2 for pipe hierarchy. 

 

 
Fig. 2 Pipe hierarchy with 12 consumers 

 

The key benefits of now pipe model were in it accuracy, the 

transport delay which varies with each consumer (exchange station)   

seems to be more close to reality. The exact values are unknown, they 

are directly depending on current mass flow, which is not measured 

for each consumer or net node and therefore can not be accurately 

compared. 

The main disadvantage of the new pipe module is higher 

time-consuming calculation for a single simulation step, the 

number of discrete quantum of flow of fluid (water) DFQ 

[12];[13] increased by a greater number of nodes, where the 

mass is divided. 

For the fast calculation, the pipe model only with one 

consumer was prepared. The pipe capacity was held. Pipe 

diameter was recalculated to use average distance and keep 

pipes capacity. Speed of model identification greatly 

increased, but this simple model reflects the changes in heating 

water temperature to the temperature of water in the return 

line, which is not usually the behavior of the real system. 

Through the distribution of consumers, the real system 

smoothes this peaks. One consumer system is however suitable 

for fast verification of new algorithms. See fig 3 for schematic 

diagram. 

 
Fig. 3 Simple, one consumer model 

 

A. Flow modeling 

Compressibility of water in the pipe is insignificant and 

does not need to be included in the model. 

In each simulation step the flow quantum, denoted 
j
DFQi in 

the network is monitored [12]. Shown in the following picture, 

 
Fig. 4 Discreet flow quantum [12] 

 

where: 

- index i describe  particular quantum,  

- index j describe time period for  
j
DFQi analysis, i.e. the 

simulation step, 

- D is pipe diameter in current  
j
DFQi location,  

- L is current 
j
DFQi length, 

- 
j
Vi is volume of  

j
DFQi 

 

We can apply simple terms: 

 

j
Vi = π * D

2
 / 4 * L           (1) 

and 

j
V0 = Mj * tj          (2) 

 

where: 

-  
j
V0 is volume of DFQ on input to distribution network 

- Mj mass flow in simulation step j. 

 

To monitor the flow quantum passing through the 

distribution network, it is of course necessary to respect the 

fundamental physical laws applicable to the fluid flow and heat 

energy transfer - conservation of mass and energy and the law 

of continuity.  

In accordance with the law of continuity we have to follow 

several rules for flow quantum: 

 

1. While passing through the section, the DFQ don’t alter its 

volume, its length L in a pipe varies depending on the 

diameter D of the current pipe line. 

2. Each section is divided into pipe lines, as noted above. 

While DFQi is passing two consecutive pipe lines p and q of 

the section, DFQi is split into the two new DFQ - DFQip and 

DFQiq. DFQip is the part of DFQi, which remains in the pipe 

line p - does not reach the border between pipe lines p and 

q, DFQiq is contrary of DFQip - part of DFQi which passed 

transition of p and q in current simulation step and switched 

into q pipe line. 

3. The above mentioned DFQi's splitting rules are valid also 

for each DFQi, which is entering node k. Each DFQi is split 

into two parts – DFQip and DFQiq. DFQiq is the part of 

DFQi, which reached the node in particular simulation step 

and DFQip is the part which does not reach it. 

For each output section j, which is outgoing for node 

k, DFQj is created. From the law of continuity we can use 

equation: 
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∑ Vol(DFQiq) = ∑ Vol(DFQj)     (3) 

 

where: 

-  Vol(DFQ) describe function, which presents particular part 

of flow quantum, 

-   ∑ on the left is processed for all section, which allows 

flow to come into the node.  

-    ∑ on the right is processed for all sections, which allows 

flow to come out from the node. 

 

1) Heat transfer modeling 

For each flow quantum, which is at a given time in the 

distribution network, its heat balance is calculated in each 

simulation step. The heat balance is based on law of the 

preservation of the heat energy. The heat energy change in 

DFQi - decrease of heat - during the time interval t, e.g. in 

single simulation step, is described by the equation [12]: 

 


j
Qi = 

j+1
Qi - 

j
Qi        (4) 

 

where: 

-  
j
Qi and 

j+1
Qi describe the amount of heat energy  

contained in the DFQi at the beginning of the 

simulation step j and simulation step j+1. 

 

The next equation is still valid: 

 
j
Qi = Vi *  * cv * 

j
Ti       (5) 

 

where: 

- cv is the heat capacity constant for the fluid (water), 

-  is water density, 

- Vi is volume of DFQi and 
j
Ti its temperature. 

 

Presented decrease of the heat j
Qi in DFQi during the time 

interval t arises from the fact that this heat is transferred to 

the surroundings, either in the form of losses (supply line) or in 

the form of consumption (consumers) [12]. 

 

Pipeline losses can be determined by the relationship 

 
j
Qi loss = kp * (

j
Ti - 

j
Tp ext) * t    (6) 

 

where: 

-  kp is the heat transfer coefficient in the current pipe line p, 

-  
j
Ti is water temperature for the DFQi 

-  
j
Tp ext is the outside temperature for the pipe line p, both in 

simulation step j. 

 

Coefficient kp is based on pipe structure - pipe material, 

style and material of insulation, pipe seating, etc. 

For the heat consumption at consumer r at time interval tj 

the following equation can be used: 

 
j
Qi cons = sr(

j
Ti, 

j
Tr ext, …) * t      (7) 

where: 

-  sr(…) is the function describing heat consumption for the 

consumer r.  
 

Determination of this function is obviously very difficult, 

but for the final solution of this task, especially in terms of its 

accuracy for those particular parts "consumers", it is very 

important.  There may be applied many different important 

factors such as: 

- type of the day - workday , weekend, holiday  etc.,  

- part of the day - morning, afternoon, evening, night,  

- type of the consumers in the particular part of the network -    

flats, schools, industrial companies etc.,  

- other weather conditions - sun intensity, wind, air humidity. 

 

To determine the functional dependences of heat 

consumption on these factors it is also possible to successfully 

use the proposed simulation model. This usage of the model 

will be included in the identification of model parameters for 

given conditions. 

 

2) Applicability 

It is expected that the proposed simulation model will be 

used in the control system SHDC for the following purposes: 

I. Identification of model parameters for the selected time 

period [11]. 

II. Prediction of appropriate timing of the supplied amount 

of heat energy for the next period [11]. 

 

I. Identification of model parameters for the selected time 

period 

As mentioned, essential for the modeling approach to 

SHDC is to determine the function sr(…) used in equations (7). 

This means that it is necessary to choose the appropriate form 

of parametric functions and find values of the parameters for 

the given conditions. 

The procedure will be described in detail on simple example 

where the function sr(…) shall only affect consumption 

fluctuations during the day. We will therefore assume that the 

function sr(…) will have the form 

 

sr(…) = r * (
i
Tj – Text) * kh      (8) 

 

where:  

-   r is the coefficient of heat transfer in segment r (here we 

suppose that the segments are pipe sections as well as 

consumer units, depending on the value of the coefficient 

), 

-   
i
Tj is the current temperature DFQi for the particular 

simulation step j, 

-   Text is the current outside temperature and 

  -  kh is coefficient which corrects heat consumption 

oscillations during a day. 
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The coefficient kh is considered as a discrete function of 

time, which changes its value at one hour intervals. Assuming 

the daily frequency of consumption of heat, this is probably a 

reasonable assumption, so it is necessary to determine 24 

coefficients kh. When we use function sr(…) in form of 

equation (8) then for each kh it is possible, in the time between 

hours, to use the value from the previous hours or use 

interpolated values. It is possible to use linear or other more 

complex interpolation. For our purpose of use kh and needful 

accuracy, the linear interpolation is fully suitable. 

To determine function kh we can use the following 

procedure, which uses the simulation model in combination 

with genetic algorithm: 

 

1. To select the appropriate length of time period, longer 

than one day. For the simplicity at the beginning of each 

simulation experiment we assume that the distribution network 

is empty. Therefore, for the beginning of the simulation, we 

must simulate the preceding interval, to let distribution 

network fills with hot water and let the state of the network 

become stabilized. This period is given at least as time delay 

for transportation, which means that all water from the source 

must have enough time to pass the system and come back to 

source again. Then we must follow at least one day period to 

obtain discrete values of kh for each hour of the day. 

 

2. For the chosen time interval to select and verify 

necessary historical data. For this task the following data are 

required (measured in time period t): 

 Temperature of heating water Tv, measured on source 

output. This is also considered as an input for distribution 

network. For our purpose only one source is expected, but 

model is generally capable to use various combinations of 

sources and consumers. 

 Temperature of returned water Tvv – output of 

distribution network ergo reentry into source. It should be 

noted that this value is implicitly influenced by the size of the 

time delay for distribution network but this is already covered 

in the structure of simulation model. 

 Total mass flow M in distributive network, again 

measured on the network input (output of the source) 

 Air temperature measured for particular points of 

distributive network. Quantities of these values will depend on 

the density of the network, its measuring points for the outside 

temperature at that location.  

If measuring points are located at different places than the 

landmarks of the distribution network, it is also possible to use 

interpolated values, in this case, interpolation in the area, i.e. 

two-dimensional. Also, if there are meteorological data 

measured in a different time period than t, the value 

interpolated in the timeline has to be used.  

Following data, if available, can help refine the whole 

calculation, e.g.: 

 Temperature Tv a Tvv in different parts of distributing 

network. 

 Pressure ratios in the major individual network points.  

These are particularly important in cases where the topology of 

distribution networks is complicated. According to these, , the 

value of the mass flow in different sections of the distribution 

network may be determined - without the knowledge of 

pressure ratios can be mass flow in each section only 

estimated. 

 

3. To determine searched values kh for 24 points of timeline 

is possible to use several methods based on principles allowing 

us to find a function(s) which should have the best course 

approximating analyzed variables. One option is for example 

to use genetic algorithms. In the presented solution was the 

method PSO (Particle Swarm Optimization) used - see [7]. 

This method has been lately compared with other methods, 

such as SOMA, neural networks [10], and Levenberg-

Marquard algorithms for nonlinear methods of least squares. It 

was found that the results achieved in terms of accuracy and 

speed of convergence is similar. PSO is therefore comparable 

for the determination of the correction factors and we use it. 

 

4. The main idea of calculation is that the approximated 

function is the timing of the Tvv for the output of the 

distribution network to source. 

 

5. For calculating the approximating function the simulation 

model will be used. For each simulation experiment, we set 

sought coefficient kh for selected points in the timeline to 

values generated by the PSO algorithm. With this sets of 

parameters one simulation experiment is processed for the 

selected time slot according to point 1. Rate of the quality of 

approximation is calculated according to equation (9), i.e. 

 

F = ∑ (
j
Tvv meas - 

j
Tvv calc)

2
 ̈      (9) 

 

where: 

- F is value of approximation accuracy (fitness), 

-  
j
Tvv meas is measured value of returned water temperature 

for the time interval tj and  

- 
j
Tvv calc is calculated value of returned water temperature 

for the simulation step j. 

 

The sum is performed for the entire simulated period in each 

simulation step. It is thus the sum of squares of deviations 

between the measured values Tvv (the values measured on the 

real system) and the calculated values Tvv (the values 

calculated using the simulation model) in terms of the search 

parameters - the values of kh in 24 points of the timeline. 
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Fig. 5 Calculated kh coefficient 

 

The calculated F value is transmitted into PSO algorithm, 

which will use it to generate the next set of values of the 

coefficients of kh, with which the process repeats. After a 

certain number of iterations (from practical results, there is a 

few thousand iterations necessary), the calculated values Tvv 

are close to measured values Tvv with sufficient accuracy. So 

designated coefficient kh can then be used in the simulation 

model as the parameters for its further use - see section II in 

chapter IV. 

An example result of the calculation of the coefficient kh 

was shown in Fig. 5. 

Later, the sequence of 24 points for one day was replaced 

by a smaller amount. Tested was point spacing of six, four and 

three hours. The current implementation uses a spacing of 

three hours. Individual points are connected using spline 

functions (before line – see fig.5). 

An example for comparison of measured and predicted 

values of Tvv in identified model, based on calculated 

coefficients, is shown in fig. 6. 

 

 
Fig. 6 Identification of SHDC - calculated and measured 

temperature   of Tvv. 

 

It is obvious that the described procedure can be reused if 

the typical pattern of consumption of heat will vary in different 

types of days - a working day, weekend day, holiday, etc. In 

this case, repeat the procedure for each typical day, with the 

use of appropriate choice of time period in accordance with 

point 1. Then, for each type of day we obtain own set of values 

kh that the model "switch" according to the type of the day 

which is being modeled [11]. 

These procedures are thus used to identify the model, i.e. to 

find such values of model parameters that provide the most 

accurate approximation of the function characterizing the 

system behavior - in this case of SHDC it is the timing of Tvv. 

It is also apparent that this procedure can be similarly used 

to seek the values of correction coefficients for other variables 

that affect the consumption of heat, like any other variable 

weather - sunshine, wind direction and magnitude, relative 

humidity, etc. [4]. Also, the procedure may be easily modified, 

if we assume a different shape and form of the function sr(…). 

 

II. Prediction of appropriate timing of the supplied amount 

of heat energy for the next period 

One of the practically applicable results tied to the use of 

the simulation model SHDC is to design a predictor of heat 

supply, useful for its production, as well as for its distribution. 

Such a predictor is a very convenient tool that enables 

efficient management of SHDC and meets the objectives stated 

at the beginning of this article. It makes it possible to perform 

dynamic calculations, which take into account both the 

characteristics of the SHDC and its temporal changes in 

response to external conditions (especially climate), which at 

the particular moment SHDC influence. Without such tools, 

the whole procedure is based only on experience and intuition 

of management and controllers, which can lead, especially 

when there are rapid changes in the state and not fully 

achieving the normal state system, to not fully effective control 

of production and distribution of heat. 

Based on the results of this work with the simulation model, 

a procedure for the design, processing and use of predictors in 

the heat of urban agglomeration consumption was proposed. 

The procedure is described in the next sections. 

It should be noted that the idea of building a predictor in the 

project gradually evolved and changed. At the beginning of the 

project, the opinion prevailed that it will be enough to identify 

a model for a longer period and once identified, the model 

could be used for this period without any modifications. But it 

turned out that this approach does not lead to sufficiently 

accurate results, the characteristics of the system are not 

sufficiently "stable". It is probably due to both the details of 

the processed model and major stochastic nature of the whole 

system. Therefore, the idea was abandoned, and the work 

moved in the direction of the procedure described below. 

Given the fact, that the work on the project is not yet finished, 

described process reflects the present state of the solution and 

may not be definitive. 

The proposed procedure is based on several fundamental 

ideas: 

- SHDC will behave similarly under similar conditions. 

- Predicted period is suitable to choose short and necessary 

calculations (including simulation) to perform for the shorter 

period repeatedly. This is depending, as already mentioned, on 

speed changes inside the SHDC and size sampling period t. 

If this period is few minutes, it is easy to perform calculations 

repeatedly. 

To control the production and distribution of heat, there are 

two control variables - temperature Tv and mass flow M. It will 
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be necessary to find and use an appropriate cost function, 

which allows the required amount of heat supplied to optimally 

divide to the parts obtained mass flow M and the temperature 

Tv. Search for this objective function is the task for other parts 

of the project and is not in this article further discussed [11]. 

III. TRAINING SAMPLES 

The above mentioned common model was subjected to a 

series of tests to determine the best period for the identification 

and subsequent prediction that best suit reality. Tested variant 

are shown below. 

A. Particular tests for time period identification 

Several periods were tested to verify various assumptions. 

 

1) Month and more 

The main idea of those tests was to cover variety of weather 

during a winter season and model identified on such long 

period will enclose the most situations. As shown on Fig.7., 

the prediction coming from such trained model has many 

inaccuracies. Even the identification was not able to adapt to 

all abnormalities. 

 

 
Fig. 7 Prediction results for month identification period 

 
2) Month and more 

Subsequent alteration comes up with the same ideas as 

Month experiment – to adapt model parameters for long period 

but train model for short prediction, just after trained samples. 

The results are quite better compared to month samples but 

disadvantage of this approach is high sensitivity to outside 

temperature changes. 

For example, if temperature changed into values which were 

not included in training samples, the subsequent prediction for 

these cases become more inaccurate. 
 

3) Week 

Another cut in training samples length brought another 

improvement. The model was adapted more accurate but   

problem with incoming days which were significantly different 

still remains. See Fig. 8. 

 

 
Fig. 8 Prediction results for month identification period 

 
4) Day 

As can be seen from previous experiment the best result 

could be obtained if the model is adapted for a small time 

period but subsequent conditions must be met. This approach 

will be described and developed further in the chapter “Similar 

day”. Difference between Original (measured) and Calculated 

(predicted) course, which can be seen in Fig.7 and 8 is reduced 

when shorter time period is used for training. Output values, 

shown in those figures are returned water temperatures (water 

in the return line). 

IV. SIMILAR DAY 

Unlike previous experiments, the examination of the period 

just prior to the desired section of prediction is not required. 

This improvement is based on the principle of finding similar 

days (periods), and application of its relevant model 

parameters on the stretch of the same nature. 

The advantage of this approach should be also that, having 

regard to the accuracy of weather forecasts for the period 

length of 24 hours. So there should be no unexpected 

fluctuations and thus should be removed error caused by 

previous procedures inappropriateness of the samples used to 

identify the model. 

To determine whether the day (period) is "similar" to 

another, the minimum variations of outdoor temperature were 

used. The day called “similar day” to day we just want to 

predict is considered such a day when outdoor temperature 

forecast deviation from the measured temperature will be 

minimal. The periods is called “similar day” but similarity is 

sought in wide range, surrounding area is also taken in 

account. Fig 9 shows three similar periods. System used 

weather forecast for 7
th

 to 9
th 

of March 2011. Anyway, 

prediction was required just from 8
th

 of March 12 PM to 9
th

 6 

PM but behavior is more obvious if we look cross all period. 
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Fig. 9 Days with similar temperature 

 

Fig 9 shows weather forecast for period to predict (blue) 

and three best matching similar days. To illustrate forecast 

accuracy, the measured temperature is presented too (red). 

The best matching period (green) were found in previous 

year (March 2010) but, as mentioned earlier, does not mean 

best conditions for subsequent use. This is well observable on 

curves below – consumed heat. The values in the previous year 

differ from the current year. Similar outside temperature in 

current year give us similar curves for other variables as well 

as for consumed heat. 
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Fig. 10 Mass flow in similar days 

 

Fig 10 – mass flow best reflect final consumption. With the 

exception of the previous year, high degree of similarity is 

observed here too. 
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Fig. 11 Heating water temperature 

 

Fig 11 presents heating water temperature in similar days. 

Heating water temperature is determined by human 

intervention. In our case it is the value of the operator 

experience, which is determined by practice and monitoring 

system in the previous days. The values would of course be 

best to set up a system that will operate at optimal levels at low 

cost.  
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Fig. 12 Water temperature in return line 

 

The water temperature in the return line is another of the 

values on which similarity can be observed system behavior. 

One may consider the temperature dependence of water in the 

return line to the outdoor temperature, but can not ignore day 

time. I.e. if we determine the dependence by regression of 

these two temperatures, it will be only the big generalization, 

because even the outdoor temperature is the same, the water 

temperature in return line typically vary in the range to five 

degrees of Celsius. We are still considering our selected 

location (system). In this system, the maximum variance of 

temperature in the return line is approximately fifteen degrees 

Celsius – considering whole heating season. Fig 12 shows a 

good resemblance of these values for similar days. Day from 

the last year is again different, which confirms the previously 

presented inappropriateness for prediction. 

 

60

70

80

90

100

110

120

130

140

150

160

0:00 12:00 0:00 12:00 0:00 12:00 0:00

[ MW ] similar 2011
similar 2011
similar 2010

 
Fig. 13 Consumed heat 

 

The most important parameter for future predicting is 

energy consumption. Similar days should have similar 

demands on the supply of heat, thus their consumption should 

be similar too. In our system, consumption is not directly 

measured. Measurement of immediate consumption is not in 

practice usual and if done so in the heat exchangers and thus to 

determine the total consumption would be collected from all 

stations. In our solutions we use only the calculated data. 

Calculation of heat is made when the model is identified. 

Fig 13 shows a similar behavior in the consumption of 
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similar days. The difference of the previous year is not only in 

quantity but especially in time. On the contrary, two similar 

days in the same year show a similar distribution of 

consumption over the time. However, there is variation in the 

observable quantities. Variation in the amount brings 

uncertainty into the system, which works only on the basis of 

similarity of outdoor temperatures. To improve the system, 

remains the task of identifying the cause of deviations and 

incorporate it into the model. 

V. CONCLUSION 

The experiments focused on adaptation for longer periods 

(week, month, etc.) suggest the increased need for finding the 

parameters reflecting the diversity of the system behavior on a 

different course with the outside temperature. Tests show that 

the most appropriate method of identification and prediction of 

returned water temperatures into the model can be considered 

an application of “similar day” method. In subsequent 

experiments, it would be useful to examine the possibility of 

establishing different ranges of similarity search. Described 

results show merely "day" meant in common view from 

midnight to midnight of the following day.  

Experiments have shown that it is appropriate to seek 

similar days in the distant past. Day with a minimum deviation 

from the predictions but found in last year's heating season is 

not suitable for further use. However, this restriction greatly 

reduces the ability to use an algorithm of “similar days” to the 

early days of the heating season. The number of days in which 

we can find similarity is minimal at the beginning and so the 

first cold days of winter can not have similar day in current 

heating season yet. To improve the system, it is important to 

find a compensation algorithm, which can be used even for 

days, which have similar course, but not an exact temperature. 

However, the model takes into account most important 

parameters affecting the amount of the heat and the 

experiments carried out so far are showing good performance. 
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