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Abstract—In decision analysis, decision trees are commonly 

used as a visual support tool for identifying the best strategy that is 

most likely to reach a desired goal. A decision tree is a hierarchical 

structure normally represented as a tree-like graph model. The tree 

consists of decision nodes, splitting paths based on the values of a 

decision node, and sink nodes representing final decisions. In data 

mining and machine learning, decision tree induction is one of the 

most popular classification algorithms. The popularity of decision 

tree induction over other data mining techniques are its simple 

structure, ease of comprehension, and the ability to handle both 

numerical and categorical data. For numerical data with continuous 

values, the tree building algorithm simply compares the values to 

some constant. If the attribute has value smaller than or equal to the 

constant, then proceeds to the left branch; otherwise, takes the right  

branch. Tree branching process is much more complex on categorical 

data. The algorithm has to calculate the optimal branching decision 

based on the proportion of each individual value of categorical 

attribute to the target attribute. A categorical attribute with a lot of 

distinct values can lead to the overfitting problem. Overfitting occurs 

when a model is overly complex from the attempt to describe too 

many small samples which are the results categorical attributes with 

large quantities. A model that overfits the training data has poor 

predictive performance on unseen test data. We thus propose novel 

techniques based on data grouping and heuristic-based selection to 

deal with overfitting problem on categorical data. Our intuition is on 

the basis of appropriate selection of data samples to remove random 

error or noise before building the model. Heuristics play their role on 

pruning strategy during the model building phase. The 

implementation of our proposed method is based on the logic 

programming paradigm and some major functions are presented in 

the paper. We observe from the experimental results that our 

techniques work well on high dimensional categorical data in which 

attributes contain distinct values less than ten. For large quantities of 

categorical values, discretization technique is necessary. 
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I. INTRODUCTION 

ECISION tree induction is a popular method for mining 

knowledge from data by means of decision tree building 

and then representing the end result as a classifier tree. 

Popularity of this method is due to the fact that mining result 

in a form of decision tree is interpretability, which is more 

concern among casual users than a sophisticated method but 

lacking of understandability such as support vector machine or 

neural network [6], [7], [8], [9], [12], [18], [19].  

A decision tree is a hierarchical structure with each internal 

node containing a decision attribute, each node branch 

corresponding to a distinct attribute value of the decision 

node, and the class of decision appears at the leaf node [3]. 

The goal of building a decision tree is to partition data with 

mixing classes down the tree until each leaf node contains 

data instances with pure class.  

When a decision tree is built, many branches may be overly 

expanded due to noise or random error in the training data set. 

Noisy data contain incorrect attribute values caused by many 

possible reasons, for instance, faulty data collected from 

instruments, human errors at data entry, errors in data 

transmission [1]. If noise occurs in the training data, it can 

lower the performance of the learning algorithm [20]. The 

serious effect of noise is that it can confuse the learning 

algorithm to produce too specific model because the algorithm 

tries to classify all records in the training set including noisy 

ones. This situation leads to the overfitting problem [4], [11], 

[17].  

Even if training data do not contain any noise, but they 

instead contain categorical data with excessive number of 

distinct values. The tree induction results also lead to the same 

problem because with large quantities of categorical values, 

the algorithm has to divide data into a lot of small groups. The 

extreme example is a group of one data instance. That 

introduces a lot of noise into the model.  

General solution to this problem is a tree pruning method to 

remove the least reliable branches, resulting in a simplified 

tree that can perform faster classification and more accurate 

prediction about the class of unknown data class labels [4], 

[11], [14]. 

Most decision tree learning algorithms are design with the 

awareness of noisy data. The ID3 algorithm [13] uses the pre-

pruning technique to avoid growing a decision tree too deep 

down to cover the noisy training data. Some algorithms adopt 

The Development of Discrete Decision Tree 

Induction for Categorical Data 

Nittaya Kerdprasop and Kittisak Kerdprasop 

D 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 6, Volume 5, 2011 499



 

 

the technique of post-pruning to reduce the complexity of the 

learning results. Post-pruning techniques include the cost-

complexity pruning, reduced error pruning, and pessimistic 

pruning [10], [15]. Other tree pruning methods also exist in 

the literature such as the method based on minimum 

descriptive length principle [16], and dynamic programming 

based mechanism [2]. 

A tree pruning operation, either pre-pruning or post-

pruning, involves modifying a tree structure during the model 

building phase. Our proposed method is different from most 

existing mechanism in that we deal with noisy data prior to the 

tree induction phase. Its loosely coupled framework is 

intended to save memory space during the tree building phase 

and to ease the future extension on dealing with streaming 

data.  

We present the framework and the detail of our 

methodology in Section 2. The prototype of our 

implementation based on the logic programming paradigm is 

illustrated in Section 3, whereas the Prolog source code of our 

prototype is provided in Appendix. Efficiency of our 

implementation on categorical data is demonstrated in Section 

4. Conclusion and discussion appear as the last section of this 

paper. 

 

II. A METHOD FOR BUILDING DECISION TREE TO HANDLE 

CATEGORICAL DATA 

Our proposed system has been named discrete-tree 

induction to enunciate our intention to design a decision tree 

induction method to handle categorical data containing 

numerous discrete values. The framework as shown in 

Figure1 is composed of the discrete-tree component, which is 

the main decision tree induction part, and the testing 

component responsible for evaluating the accuracy of the 

decision tree model as well as reporting some statistics such as 

tree size and running time.  

Categorical value handling of our discrete-tree induction 

method can be achieved through the selection of the 

representative data, instead of learning from each and every 

training data. These selected data are used further in the tree 

building phase. Training data are first clustered by clustering 

module to find the mean point of each data group. The data 

selection module then uses these mean points as a criterion to 

select the training data representatives. It is a set of data 

representatives that to be used as input of the tree induction 

phase. 

Heuristics have to be applied as a threshold in the selection 

step and as a stopping criterion in the tree building phase. The 

algorithms of a main module as well as the clustering, data 

selection, and tree induction modules are presented in Figures 

2-5, respectively. 

 

 

 

 

 

 

 

Fig. 1 a decision tree induction framework 

 

 

 

Input: Data D with class label  

Output: A tree model M 

Steps: 

1. Read D and extract class label to check distinctive 

values K 

2. Cluster D to group data into K groups 

3. In each group 

    3.1  Get mean attribute values 

    3.2. Compute similarity of each member compared to 

its mean 

    3.3  Compute average similarity and variance  

    3.4  Set threshold T = 2*Variance 

    3.5  Select only data with similarity > T 

4. Set stopping criteria S for tree building as 

      S = K – log [ (number of removed data + K) / |D| ] 

5. Send selected data and criteria S into tree-induction 

module 

6. Return a tree model 

 

Fig. 2 discrete-tree induction main algorithm 
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Steps: 

1. Initialize K means  /* Create temporary mean 

points for all K clusters.  */ 

2. Call find_clusters(K, Instances, Means) /* assign 

each data to the closest cluster; reference point 

is the mean of cluster */ 

3. Call find_means(K, Instances, NewMeans) /* 

compute new mean of each cluster; this 

computation is based on current members of 

each cluster */ 

4. If Means  NewMeans Then repeat step 2 

5. Output mean values and instances in each clusters 

Fig. 3 categorical data clustering algorithm 

 

 

Steps: 

1. For each data cluster 

2.       Compute similarity of each member compared to 

cluster mean 

3.       Computer average similarity score of a cluster 

4.       Computer variance on similarity of a cluster 

5.       Threshold = 2* variance 

6.       Remove member with  

                   similarity score  < Threshold 

7. Return K clusters with selected data 

Fig. 4 data selection algorithm 

 

Steps: 

1. If data set is empty                     

2.      Then Assert(node(leaf,[Class/0], ParentNode)    

3.               Exit        

/* insert a leaf node in a database, then exit */  

4. If number of data instances < MinInstances    

5.      Then Compute distribution of each class 

6.                 Assert(node(leaf, ClassDistribution, 

ParentNode)    

7. If all data instances have the same class label   

8.       Then  Assert(node(leaf, ClassDistribution, 

ParentNode)   

9. If data  > MinInstances and data have mixing class 

labels    

10.       Then BuildSubtree 

11.  If data attributes conflict with the existing attribute 

values of a tree    

12.        Then stop growing and create a leaf node with 

mixing class labels 

13. Return a decision tree 

 

Fig. 5 tree building algorithm 

III. A LOGIC-BASED IMPLEMENTATION 

We implement the discrete-tree induction method based on 

the logic programming paradigm using SWI-Prolog 

(www.swi-prolog.org). Program and data set are in the same 

format, that is Horn clauses. Example of data set is shown in 

Figure 6.  

 

  %  attribute detail 

  attribute(size,    [small, large]). 

  attribute(color,  [red, blue]). 

  attribute(shape, [circle, triangle]). 

  attribute(class,  [positive, negative]). 

 %   data 

  instance(1, class=positive, [size=small, color=red, 

shape=circle]). 

  instance(2, class=positive, [size=large, color=red, 

shape=circle]). 

  instance(3, class=negative, [size=small, color=red, 

shape=triangle]). 

  instance(4, class=negative, [size=large, color=blue, 

shape=circle]). 

 
Fig. 6 sample data set in a Horn clause format 

 

 

Discrete-tree induction program provides two schemes of 

tree building: 0 and 1. Scheme 0 corresponds to ordinary ID3 

style [9] without additional noise handling mechanism. 

Scheme 1 is a tree induction with a heuristic-based mechanism 

to deal with noisy and categorical data. Prolog coding of both 

schemes are as follows. 
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Program running on sample data set start with a command 

„dt‟ as shown in Figure 7. Users have two choices of tree 

induction method: conventional decision tree induction 

(response with 0), and a discrete-tree induction with facilities 

to handle categorical data (response with 1). 

 

Fig. 7 a screenshot of running a discrete-tree program on sample data 

set of four instances 

 

IV. EXPERIMENTATION AND RESULTS 

To test the accuracy of the proposed discrete-tree induction 

system, we use the standard UCI data repository [5] including 

the Wisconsin breast cancer, SPECT heart, DNA splice-

junction, and audiology data sets. Each data set is composed 

of two separate subsets of training and test data. We then run 

the discrete-tree program and observe the results comparing to 

other learning algorithms, namely C4.5, Naive Bayes, k-

Nearest Neighbor, and support vector machine. The 

comparison results are graphically shown in Figure 8. 

It can be noticed from the results that the discrete-tree 

induction method shows considerably accurate prediction on 

SPECT heart data set. On Wisconsin breast cancer and DNA 

splice-junction data sets, our algorithm is as good as the other 

learning algorithms. But the discrete-tree induction performs 

poorly on audiology dataset. The poor performance may be 

due to the fact that such data set contains a single value on 

many attributes causing our data selection scheme making a 

poor set of samples. 

For a SPECT heart data set, we provide tree model obtained 

from our algorithm to compare against the model obtained 

from the C4.5 algorithm. The two models are presented in 

Figure 9. 
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(a) Wisconsin breast cancer 

 
(b) SPECT heart 

 
(c) DNA splice-junction 

 
(d) Audiology 

 
Fig. 8 comparison results of prediction accuracy 

 

 

C4.5 model: 

F18 = 0 

|   F21 = 0: 0 (59.0/12.0) 

|   F21 = 1 

|   |   F9 = 0 

|   |   |   OVERALL_DIAGNOSIS = 0: 0 (3.0/1.0) 

|   |   |   OVERALL_DIAGNOSIS = 1: 1 (7.0/1.0) 

|   |   F9 = 1: 0 (5.0/1.0) 

     F18 = 1: 1 (6.0) 

 

 

Discrete-tree model: 

f13=0 

         f2=0 

        f1=0 => [ (class=0)/12, (class=1)/2] 

        f1=1 => [ (class=1)/0] 

    f2=1 => [ (class=1)/0] 

                      f4=1 => [ (class=0)/1] 

                      f6=1 => [ (class=0)/1] 

                    f22=1 => [ (class=0)/3, (class=1)/1] 

                  f5=1 => [ (class=0)/4] 

                f19=1 => [ (class=0)/1, (class=1)/1] 

              f20=1 => [ (class=0)/2, (class=1)/1] 

            f8=1 => [ (class=0)/2] 

          f9=1 => [ (class=0)/3] 

        f7=1 => [ (class=0)/3, (class=1)/2] 

      f16=1 => [ (class=1)/2] 

    f11=1 

      f16=0 

        f19=0 => [ (class=0)/2, (class=1)/3] 

        f19=1 => [ (class=1)/5] 

      f16=1 => [ (class=0)/1] 

f13=1 

 f16=0 

      f8=0 

        f10=0 => [ (class=0)/4, (class=1)/1] 

        f10=1 => [ (class=1)/2] 

      f8=1 

        f21=0 => [ (class=1)/5] 

        f21=1 => [ (class=0)/1, (class=1)/4] 

    f16=1 => [ (class=1)/11] 

 

Fig. 9 a tree model of C4.5 comparing to a tree model of discrete-tree 

induction algorithm on a SPECT heart data set 
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V. CONCLUSION 

Categorical data can cause serious problem to many tree 

learning algorithms in terms of distorted results and the 

decrease in predicting performance of the learning results. In 

this paper, we propose a methodology to deal with categorical 

values in a decision tree induction algorithm. Our intuitive 

idea is to select only potential representatives, rather than 

applying the whole training data that some values are highly 

dispersed, to the tree induction algorithm.  

Data selection process starts with clustering in order to 

obtain the mean point of each data group. For each data group, 

the heuristic T = 2 * Variance-of-cluster-similarity will be 

used as a threshold to select only data around mean point 

within this T distance. Data that lie far away from the mean 

point are considered prone to noise and outliers; we thus 

remove them.  

The removed data still play their role as one factor of a tree 

building stopping criterion, which can be formulated as S = K 

– log[(number of removed data instances + K) / |D|], where K 

is the number of clusters, which has been set to be equal to the 

number of class labels, and D is the number of training data. 

From experimental results, it turns out that our heuristic-

based decision tree induction method produces a good 

predictive model on categorical data set. It also produces a 

compact tree model. With such promising results, we thus 

plan to improve our methodology to be incremental such that 

it can learn model from steaming data. 

 

APPENDIX 

A source code of discrete decision tree, implemented with 

Prolog programming language. 

 
%% Program   Discrete-Tree Induction 

%% 

%%   by Nittaya Kerdprasop 

%%   date 1 August 2011  

%% 

%%   A decision tree induction program that can handle  

%%       categorical and noisy data. 

%%   The effect of noise is to be decreased by clustering  

%%        and data around means are selected for further 

%%        classification by decision-tree induction. 

%% 

%%   Data format: 

%% 

%%  attribute(size, [small, large]). 

%%  attribute(color, [red, blue]). 

%%  attribute(shape, [circle, triangle]). 

%%  attribute(class, [positive, negative]). 

% 

%%  instance(1, class=positive, [size=small, color=red,  

%%                                             shape=circle]). 

%%  instance(2, class=positive, [size=large, color=red,  

%%                                             shape=circle]). 

%%  instance(3, class=negative, [size=small, color=red,  

%%                                             shape=triangle]). 

%%  instance(4, class=negative, [size=large, color=blue,  

%%                                             shape=circle]). 

% 

%% Node format:          node(NodeID, NodeLabel, ParentNode) 

%%     where 

%%                NodeID = 1, 2, 3, ..., root, leaf 

%%                NodeLabel = "attribute=value / number_of_instances" 

%%                ParentNode = 1, 2, 3, ..., root 

%%  e.g. 

%%         node(1, shape=triangle, root). 

%%         node(2, shape=circle, root). 

%%         node(3, color=blue, 2). 

%%         node(4, color=red, 2). 

%%         node(leaf, [(class=negative/1)], 1). 

%%         node(leaf, [(class=negative/1)], 3). 

%%         node(leaf, [(class=positive/2)], 4). 

% 

%% Start program with the query  

%%                      ?- dt.         % for discrete-tree induction 

%% 

%%     then specify parameter:    

%%      0 = no addition of pruning technique; traditional ID3 

%%      1 = extract data around centroids as representatives for  

%%                    tree building 

%%                     (number of clusters = number of classes, 

%%                       clustering technique is K-medoids) 

%% 

%%  Input data with the following format: 

%%           data-sample. 

%% 

%%  To test model accuracy, call          ?-test. 

%%  Then input test data, e.g.,  

%%           data-sample-test. 

% 

% =================================== 

%% Program source code start here: 

%% 

%%   Note that  each module will be explained with the following  

%%   format: 

%%            an input argument is prefixed with a plus sign (+), 

%%            the output argument is prefixed with a minus sign (-). 

 

%% Main module:  dt 

%% ========== 

   dt :-  

      writeln('Discrete tree induction for categorical classification:'),nl, 

      writeln(' There are two choices of tree induction methods'), 

      writeln('  0 = simply ID3 style without pruning'), 

      writeln('  1 = grouping data then select representatives to  

                    build tree'), 

      nl, 

      write('     Please specify your choice (and end command with 

                    a period): '), 

      read(L), 

      write('    Training-data file name (e.g. data-sample.) ==> '), 

       read(D),                     % get data file 

       consult(D),                 % data is also a prolog program 

       get_time(StartTime), 

                % clear all nodes and node-ID counter in the DB        

                % node and counter are two global values of this program 

       retractall(node(_, _, _)),          

       retractall(counter(_)),             

            % make list Attr of all attribute names except attribute class    

      findall(A, (attribute(A, _), A \= class), Attr),           

      dtree(L, Attr), 

      get_time(FinishTime), 

      Time is FinishTime-StartTime, 

       nl,write('DISCRETE-TREE:: tree building method '), 

       write(L),write(',  '), 

       write('Model building time = '),  

       write(Time), writeln('  sec.'). 

 

% --------------------------------------         

%  start traditional tree-induction with ID3 algorithm 

 

   dtree(0, Attr) :-  !,                                  

            % make a list Ins = [1,2,...,n] of all instance ID 

       findall(N, instance(N, _, _), Ins),     

            % create decision tree, start with the root node 

            % set MinInstance in leaf nodes = 1 
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            % then show model as decision tree once finish  

            % building phase 

       induce_tree(root, Ins, Attr, 1),     

       print_tree_model. 

 

%--------------------------------------------- 

% start clustering before induce tree                            

 

   dtree(1, Attr) :-  !,                 

       attribute(class, ClassList), 

       length(ClassList, K), 

       findall(N, instance(N,_,_),Ins), 

       clustering(Ins, K, Clusters, Means), 

       select_DataSample(Clusters,K,Means,[],Sample), 

       removed_Data(Sample, Ins, Removed), 

       length(Removed, R), 

       length(Ins, I), 

       MinInstance is K-log((R+K)/I),       % a heuristic to prune tree 

       induce_tree(root,Sample,Attr,MinInstance), 

       print_tree_model, 

      write('Min instances in each branch = '), writeln(MinInstance), 

      nl,write('Initial Data = '),write(I),writeln(' instances'), 

       write('Removed Data = '), writeln(Removed), 

       write('    removed = '),write(R), writeln('   instances'),nl . 

  

%% -------------------------------------------------------- 

%% Module induce_tree(+ParentNode, +InstanceIDlist,  

%%  ===============   +AttributeList, +MinInstance) 

%%                  

%% This module induces each node of decision tree. 

%% There are four possible cases of tree induction based on  

%% current data characteristics. 

%%             

 

%% Special case: empty data set, do nothing 

          induce_tree(ParentNode,[],_,_) :-  

                        instance(_,Class,_), 

                        assertz(node(leaf,[Class/0],ParentNode)), !. 

 

%%   Case 1: Number of instances =< the specified MinInstance. 

%%       Thus, create a leaf node labelled with class distribution. 

 

   induce_tree(ParentNode, InstanceIDlist, _, MinInstance) :- 

             length(InstanceIDlist, NumInstances), 

                      % a constraint to satisfy case1 

             NumInstances =< MinInstance,     

                      % count distinctive classes of current InstanceIDlist 

                      % e.g. Dist = [class=negative/1, class=positive/2] 

             classDistribution(InstanceIDlist, Dist),  

                      % insert a leaf node into the DB, don't try other cases 

             assertz(node(leaf, Dist, ParentNode)), !.  

 

%%  Case 2: Number of instances > the specified MinInstance, 

%%      but all instances are in the same class. 

%%     Therefore, create a leaf node labelled with a class  

%%       distribution. 

 

  induce_tree(ParentNode, InstanceIDlist, _, _) :- 

              classDistribution(InstanceIDlist, Dist),                                                                           

              length(Dist, 1),                                       

                      % a constraint to assert the case of single class 

              assertz(node(leaf, Dist, ParentNode)), !. 

 

%%   Case 3:  Number of instances > the specified MinInstance. 

%%         Data contain a mixture of several classes, then grow tree. 

 

  induce_tree(ParentNode, InstanceIDlist, AttrList, MinInstance) :- 

        choose_attribute(InstanceIDlist, AttrList, A, Values, RestAttr),  

                          % choose the best attribute A from the AttrList 

                          % then build a subtree with A as a root node 

         build_subtree(Values, A, InstanceIDlist, ParentNode,  

                                RestAttr, MinInstance), 

         !. 

 

%%     Case 4:  Cannot inducing tree due to inconsistent data 

%%                     thus, stop growing tree and create a leaf node with 

%%                     heterogenous classes, e.g., [(class=positive/2),  

%%                     (class=negative/1)]                      

 

  induce_tree(ParentNode, InstanceIDlist, _, _) :-      

         node(ParentNode, TestAttribute, _),                        

                    % locate the error point 

         write(' Inconsistent data: '), write(InstanceIDlist), 

         write('     Cannot split at node: '), writeln(TestAttribute),      

         classDistribution(InstanceIDlist, Dist),                                                                

         assertz(node(leaf, Dist, ParentNode)), !.                    

                   % insert a leaf node into the DB 

%% ---------------------------------------------------------------- 

 

%% Module classDistribution(+InstanceIDlist, -ClassDistribution) 

%% =================== 

%%  e.g.  InstanceIDlist = [1,2,3,4] 

%%          ClassDistribution = [class=positive/2, class=negative=2] 

 

   classDistribution(InstanceIDlist, ClassDistribution) :- 

             setof(Class, I^AttrList^(member(I, InstanceIDlist),  

                                                     instance(I, Class, AttrList)), C), 

             % make a set C of distinctive classes from InstanceIDlist 

             % e.g. C = [class=positive, class=negative] 

             countClassMember(C, InstanceIDlist, ClassDistribution). 

          % count number of instances in each class and return 

          % a class distribution, e.g., [class=positive/2,  

                % class=negative/2] 

 

     countClassMember([], _, []) :- !. 

     countClassMember([C|L], I, [C/N | T]) :- 

                 findall(X, (member(X, I), instance(X, C, _)), W),                               

                         % make a list W of instanceID in each class 

                         % e.g. W = [1,2] for class positive 

              length(W, N),      

                             % output N = number of instances in class C 

                 countClassMember(L, I, T).    % count remaining classes 

%% --------------------------------------------------------------- 

 

%% Module choose_attribute(+InstanceIDlist, +AttrList, -A, -Values, 

-RestAttr) 

%% =================== 

%%    e.g., InstanceIDlist = [1,2,3,4],  AttrList = [size, color, shape] 

%%   A = shape,  Values = [triangle, circle], RestAttr = [size, color] 

 

   choose_attribute(InstanceIDlist, AttrList, A, Values, RestAttr) :- 

               length(InstanceIDlist, InsLen), 

               compute_info(InstanceIDlist, InsLen, I), !,    

                        %  I  is expected number of information needed 

                        %    to encode class of the given InstanceIDlist 

               findall( A/Gain,    % find gain value of each attribute  

           %  with the following pattern of computation 

            ( member(A, AttrList),  attribute(A, Values),    

                      split_instances(Values, InstanceIDlist, A, InsSubset),  

                      subset_info(InsSubset, InsLen, R),    

                      Gain is I - R ), 

                    % extract attribute name A from AttrList one at a time,  

                 % and get all possible values of attribute A 

                    % then split instances based on the value of A 

                    % compute info of data subset 

                 % then compute gain value of A 

           AttributeGainList),      

                    % output is a list of attribute/gain 

                    % e.g. [size/0, color/0.311278, shape/0.311278] 

           maximum(AttributeGainList, A/_),    

                     %  find attribute A with the maximum gain 

              attribute(A, Values),       

                     % extract valuelist of this attribute 

                     %  and return the list of remaining attributes 

           remainAttr(A, AttrList, RestAttr), !.    
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%% supporting module to compute info I of given instances 

%    e.g., info([positive/2, negative/1]  

%              = -2/3 log 2/3 - 1/3 log 1/3 = 0.918 

compute_info(InstanceIDlist, InsLen, I) :-                                      

        attribute(class, CList),           % get a list of class values 

     sum_info(CList, InstanceIDlist, InsLen, I). 

 

sum_info(_,_,0,0) :- !.           % zero instance has info = 0 

sum_info([], _, _, 0) :- !.   % an empty class has info = 0 

sum_info([C | Cs], InsIDlist, InsLen, Info) :-       

 findall(Ins, ( member(Ins, InsIDlist),  

                        instance(Ins, class=C, _) ), ClassInstance), 

                       % create a list to contain instances of each class 

    length(ClassInstance, N),       

                       % then count the instance number 

 sum_info(Cs, InsIDlist, InsLen, I),     

                       % do the same with other classes 

    InsLen > 0, 

 P is N / InsLen, 

                       % if (N/InsLen) = 0,  

                       %   set Info = 0 to avoid calculate log(0) 

 ( P=0, Info = 0; 

   Info is I - (P) * (log( P ) / log(2) ) ). 

 

% supporting module  

% split_instances(+Values,+InstanceIDlist, +A, - InsSubset) 

%               e.g.,Values=[large, small],   

%               InstanceIDlist=[1,2,3,4], A=size                                            

%               the module will return InsSubset = [ [2,4], [1,3]]              

 split_instances([], _, _, []) :- !. 

 split_instances([V | Vs], InstanceIDlist, A, [InsIDlist | Rest]) :- 

 findall( InsID, ( member(InsID, InstanceIDlist),  

                            instance(InsID, _, L),  

                            member( A=V, L) ), InsIDlist), 

              % split instances into subset InsIDlist based on  

              % the attribute value V 

              % then, do the same for other attribute values Vs 

 split_instances(Vs, InstanceIDlist, A, Rest).    

 

%% supporting module subset_info 

%% 

subset_info([], _, 0) :- !. 

subset_info([InsGroup | OtherGroups], Len, Res) :- 

 length(InsGroup, LenInsGroup), 

 compute_info(InsGroup, LenInsGroup, I), !, 

 subset_info(OtherGroups, Len, R), 

    Len > 0, 

 Res is R + I * LenInsGroup / Len. 

 

%% supporting module maximum to search for attribute with  

%% maximum gain 

%%    

maximum([A], A) :- !.              % base case: list of one attribute 

maximum([A/GainA | Rest], Attribute/Gain) :-   

                                              % recursively shorten the list 

 maximum(Rest, Att/G),             

 (GainA > G, Attribute/Gain = A/GainA ; 

                    Attribute/Gain = Att/G ), !. 

 

%% supporting module remainAttr 

%% 

  remainAttr(A, [A | T], T) :- !. 

  remainAttr(A, [X | T], [X | Rest] ) :- remainAttr(A, T, Rest). 

%% ----------------------------------------------------------------- 

 

%% Module build_subtree(+AttrValues, +A, +InstanceIDlist,  

%%  ================    +ParentNode, +RestAttr,+MinInstance)        

%%    This module recursively create subtree start from the  

%%        chosen attribute A. 

%%    Branches of A are stored in a list AttrValues. 

%%  e.g., A= shape, AttrValues = [triangle, circle],  

%%          InstanceIDlist = [1,2,3,4],  

%%          ParentNode = root 

%%    the module builds subtree extended from the root node  

%%  with two branceses: 

%%  shape = triangle   and  shape = circle 

%%   The build_subtree process continues until  

%%       the stopping criteria MinInstance has been reached. 

%%               

  

   build_subtree([], _, _, _, _, _) :- !.     

                 % base case: there is no more attribute left   

                 % to create subtree 

                               

   build_subtree([ V|Vs], A, InsIDlist, ParentNode,  

                            RestAttr, MinInstance) :- 

               % create root of subtree 

                  % get subset of instances with attribute A=V 

 findall(InsID, (member(InsID, InsIDlist), instance(InsID, _, L),   

       member(A=V, L) ), Inslist),                             

 getNodeID(NodeID), 

 assertz(node(NodeID, A=V, ParentNode)), 

   % recursively build left subtree 

 induce_tree(NodeID, Inslist, RestAttr, MinInstance), !, 

   % build  right subtree based on Vs 

 build_subtree(Vs, A, InsIDlist, ParentNode,  

                            RestAttr, MinInstance). 

 

%% supporting module getNodeID(-NodeID) 

%% 

getNodeID(M) :- 

 retract(counter(N)),  % check current counter N 

 M is N + 1,  % increment N by 1 

 assert(counter(M)), !. % then record the new counter 

      

 getNodeID(1) :- assert(counter(1)).  

                          % if counter does not exist, then create one 

 

%% ------------------------------------------------------------------- 

%% Module print_tree_model: 

%% ============= 

  print_tree_model :-  

                print_tree_model(root, 0),  

                         % start from root node at position zero 

                nl, nl, write('Size of tree: '), 

                retract(counter(N)), write(N), write(' internal nodes and '), 

                findall(Node, node(leaf, _,Node), NL), 

                length(NL, M), 

                write(M), writeln(' leaf nodes.'). 

 

  print_tree_model(ParentNode, _) :-          

                          % the case for printing leaf node 

          node(leaf, Class, ParentNode), !,    

          write(' => '), write(Class). 

 

  print_tree_model(ParentNode, Position) :- 

        findall(Son, node(Son, _, ParentNode), L), 

        Position1 is Position+2, 

        childList(L, Position1), !. 

 

  childList([], _) :- !. 

  childList([N|Child], Pos) :- 

         node(N, NodeLabel, _), 

         nl, tab(Pos), write(NodeLabel), 

         print_tree_model(N, Pos), 

         childList(Child, Pos). 

 

%=============END BUILD DISCRETE-TREE========== 

% 

%==== Test Tree Accuracy ========= 

% 

test :- 

      write('Test-data file name (e.g. data-sample-test.) ==> '), 

      read(D),      consult(D), 

      get_time(Start), 

                            % get all instance ID of test data 

      findall(TestIns, instance(TestIns, _, _), TestInsList), 

      length(TestInsList, NumTestCase), 
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                            % send all test cases to test_accuracy module       

                            %      with initial correct case = 0 

      test_accuracy(TestInsList, 0, Totalcorrect), !, 

      Accuracy is Totalcorrect / NumTestCase, 

      nl,write('Predicting correctly: '), write(Totalcorrect),  

      write(' from '), write(NumTestCase), write(' cases ==> '), 

      write('Accuracy = '), writeln(Accuracy), 

      get_time(Finish), 

      Time is Finish- Start, 

      nl, tab(5),write('Model Test Time = '),write(Time),writeln('  sec.'). 

 

 %% Module test_accuracy 

 %%  get all test cases, and  

 %%    start evaluating correctness of prediction one case at a time,  

 %%    stop when the lest of test cases is empty, 

 %%    then report the total number of cases predicted correctly 

  

test_accuracy([], C, C) :- !.   

            

test_accuracy([Case| Rest], Correct, NextCorrect) :-                                                       

        instance(Case, Trueclass, AttList), % get current test case 

                 % search tree for predicted class start from root node 

        search_decision(root, AttList, Prediction),  

                 % compare Trueclass and PredictedClass 

                 % and count correct prediction 

        evaluate(Case, Trueclass, Prediction, Correct, NewCorrect), 

                 % recursively do the same for other cases 

        test_accuracy(Rest, NewCorrect, NextCorrect). 

 

search_decision(StartNode, _, Prediction) :- 

          node(leaf, Prediction, StartNode), !.   

                        % return Prediction once leaf node has been found 

 

search_decision(StartNode, AttList, Prediction) :- 

          node(NextNode, TestAtt, StartNode), 

          member(TestAtt, AttList), !, 

          search_decision(NextNode, AttList, Prediction). 

 

evaluate(_, Trueclass, Prediction, Correct, NewCorrect) :- 

                % Prediction might be a mixture such as 

                %            [(class=positive)/2, (class=negative)/1] 

                % thus, PredictedClass should be the majority class 

          maximum(Prediction, PredictedClass/_),          

         (Trueclass == PredictedClass,  NewCorrect is Correct +1; 

           NewCorrect = Correct). 

                

%% ======== END Test-Tree====================== 

%% 

%%  Module Clustering 

%%  ============== 

clustering(Ins, K, Clusters, Means) :- 

      length(Ins, N), 

      initialized_means(N, K, [], MeanPoints), 

                                   % e.g. MeanPoints = [2/1, 3/2] 

                                    % get attributes of initial MeansPoints 

      findall(MeanAttr/Cluster, (member(P/Cluster, MeanPoints), 

                      instance(P, _, MeanAttr)), MeansAttrList), 

                          % e.g. [(size=small,color=red,shape=circle)/1, 

                          %         (size=large,color=blue,shape=circle)/2] 

      assign_clusters(MeansAttrList, Ins, K, Clusters,Means). 

 

assign_clusters(MeansAttr, Ins, K, Clusters,Means) :-  

      find_clusters(MeansAttr, Ins, [], InsClusterList), 

      find_means(InsClusterList, K, [], TempMeans), 

      getRepresentatives(TempMeans,Ins,[],RepList), 

      getMeans(RepList,[],NewMeans), 

      find_clusters(NewMeans, Ins, [], NewInsClusterList), 

      entropy(InsClusterList, K, PreEntropy), 

      entropy(NewInsClusterList, K, PostEntropy), 

      average(PreEntropy, PreEn), 

      average(PostEntropy, PostEn), 

      (PostEn >= PreEn, Clusters = InsClusterList,  

                                   Means = NewMeans, ! ; 

          assign_clusters(NewMeans, Ins, K, Clusters,Means),!). 

initialized_means(_, 0, Means, Means) :- !. 

 

initialized_means(N, K, Means, NewMeans) :- 

       MeanIns is random(N-1)+1, 

       NewK is K-1, 

       initialized_means(N, NewK, [MeanIns/K|Means], NewMeans). 

 

find_clusters(_, [], List, List) :- !. 

 

find_clusters(MeanAttrList, [Ins|Rest], CurrentList, NewList) :- 

         findall(Cluster/Score, (instance(Ins,_, InsAtt), 

                     member(MAtt/Cluster, MeanAttrList), 

                     similarity(MAtt, InsAtt, 0, Score) ), 

                     ClusterScoreList), 

         maximum(ClusterScoreList, Cluster/_), 

         find_clusters(MeanAttrList, Rest, [Ins/Cluster|CurrentList], 

                     NewList). 

        

similarity([],[],S,S) :- !. 

 

similarity([A | RestA1], [A | RestA2], Score, NewS) :- 

                       NewScore is Score + 1, !, 

                       similarity(RestA1, RestA2, NewScore, NewS). 

 

similarity([A1| RestA1], [A2|RestA2], Score, NewS) :- 

                        A1 \= A2, 

                        similarity(RestA1, RestA2, Score, NewS). 

 

minimum([ClusterScore], ClusterScore) :- !. 

 

minimum([C/S | Rest], Cluster/Score) :- 

             minimum(Rest, Clus/Sc), 

             ( Sc > S, Cluster/Score = C/S ; 

                             Cluster/Score = Clus/Sc), !. 

 

find_means(_, 0, List, List) :- !. 

 

find_means(InsClusterList, K, CurrentList, NewList) :- 

            findall(Ins, member(Ins/K, InsClusterList), InsList), 

            findall(Name=Vlist, (attribute(Name,Values), 

                       Name \= class, 

                        findall(V/0, member(V,Values), Vlist)), 

                        AttValueList), 

            common_attributes(InsList, AttValueList, AttrList), 

            NewK is K - 1, 

            find_means(InsClusterList, NewK, [AttrList/K | CurrentList], 

                       NewList).         

 

common_attributes([], AttValueList, AttList) :- !, 

             findall(A=V, (member(A=VList, AttValueList), 

                                  maximum(VList, V/_)  ),   AttList). 

 

common_attributes([Ins|Rest], AttValueList, AttList) :- 

            instance(Ins,_, AttValue),      

            count_value(AttValue, AttValueList, NewAttValueList), 

            common_attributes(Rest, NewAttValueList, AttList). 

 

count_value([], AVList, AVList) :- !. 

 

count_value([A=V|Rest], AttValueList, NewAttValueList) :- 

            member(A=VList, AttValueList), 

            delete(AttValueList, A=VList, TempAttValueList), 

            member(V/Count, VList), 

            delete(VList, V/Count, TempVList), 

            NewCount is Count + 1, 

            append([V/NewCount], TempVList, NewVList), 

            append([A=NewVList], TempAttValueList, NewAVList), 

            count_value(Rest, NewAVList, NewAttValueList). 

 

entropy(_, 0, []) :- !. 

 

entropy(InsCluster, K, Entropy) :- 

            K>0, 

            findall(Ins, member(Ins/K, InsCluster), InsList), 
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            length(InsList, InsLen), 

            (InsLen >0, 

                   compute_info(InsList, InsLen, Info), 

                   Entropy = [K/Info | RestEntropy]; 

            Entropy = [K/1 | RestEntropy]), 

            NewK is K-1, 

            entropy(InsCluster, NewK, RestEntropy). 

 

sum_list([], 0) :- !. 

sum_list([H|T], Value) :- 

              sum_list(T, NewValue), 

              Value is H + NewValue. 

 

getRepresentatives([],_, List, List) :- !. 

getRepresentatives([Mean/Cluster | Rest], InsList, Current,  

                               NewList) :- 

            findall(Ins/Score, (member(Ins, InsList), 

                        instance(Ins,_,InsAtt), 

                        similarity(InsAtt, Mean, 0, Score)), 

                        InsScoreList), 

            maximum(InsScoreList, Instance/_), 

            delete(InsList, Instance, NewIns), 

            getRepresentatives(Rest,NewIns,  

                       [Instance/Cluster | Current], NewList). 

 

getMeans([], List, List) :- !. 

getMeans([Ins/Cluster | Rest], Current, NewMeans) :- 

            instance(Ins,_, InsAtt), 

            getMeans(Rest, [InsAtt/Cluster | Current], NewMeans). 

 

removed_Data(DataSample, InstList ,RemovedData  ) :- 

              findall( D, (member(D, InstList), 

                                 not(member(D, DataSample))), 

                                 RemovedData). 

 

select_DataSample(_, 0, _, DataSample, DataSample) :- !. 

 

select_DataSample(Clusters, K, Means, TempData, DataSample) :- 

             findall(Ins, member(Ins/K, Clusters), InsKList), 

             length(InsKList, Len), Len > 0, 

             findall(I/Score, (member(I, InsKList), 

                        instance(I, _, InsAtt), member(MAtt/K, Means), 

                        similarity(InsAtt, MAtt, 0,Score)), 

                        IScoreList), 

            average(IScoreList, Average), 

            variance(IScoreList, Average,Variance),  

            Threshold is (2 * Variance), 

            findall(Inst, (member(Inst/Sc, IScoreList), 

                                 Sc >= Threshold),  

                                 InstList), 

            append(InstList, TempData, NewData), 

            NewK is K-1, 

            select_DataSample(Clusters, NewK, Means,  

                                           NewData, DataSample). 

 

 average(ValueList, E) :- 

            findall(S, member(_/S, ValueList), SList), 

            sum_list(SList, SValue), 

            length(SList, Len),  

            (Len=0, E = 0; E is SValue / Len). 

 

variance(ValueList, Avg, Var) :- 

            findall(Diff, (member(_/S, ValueList), 

                                 Diff is abs(S-Avg)),  

                                 DiffList), 

            sum_list(DiffList, DValue), 

            length(DiffList, DLen),  

            D is DLen-1, 

            (D=0, Var = 0; Var is DValue / D). 

 

% ===== End Clustering ============= 
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