
 

 

  
Abstract—The main aim of this paper is to present various 

approaches to solving an industrially motivated control problem, 
especially from the viewpoint of implementation of control 
algorithms into the Matlab and Pascal environment. The motivation 
and basic conditions of the application have been based on real 
technical assignment of a manufacturer of aluminium-based rolled 
products and packaging materials. The primary part of the work deals 
with selected digital self-tuning controllers where the applied 
methods comprise a polynomial approach to discrete-time control 
design and recursive least-squares identification algorithm LDDIF. 
Subsequently, two alternative approaches were analyzed, namely 
control using continuous-time regulator with fixed parameters and 
usage of delta approach in self-tuning control. 
 

Keywords—Self-tuning controllers, digital control, polynomial 
approach, software implementation, continuous-time control, delta 
models.  

I. INTRODUCTION 
EAL control of industrial processes is almost always 
burden with various perturbations, disturbances and 

changes in process parameters or dynamics due to varying 
operational conditions, plant properties themselves, etc. 
Furthermore, an acceptable a priori mathematical model does 
not have to be known. In spite of it, such processes have to be 
controlled. 

A possible solution to this task represents an area of control 
theory known as adaptive control or more specifically usage 
of self-tuning controllers [1]-[9]. Some specific issues related 
to self-tuning control can be found e.g. in [10], [11]. The main 
idea consists in modification of control law according to the 
changing plant parameters obtained via recursive 
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identification. Its advantage is some kind of “intelligent” 
behaviour, but on the other hand these regulators are quite 
complex and not easily applicable. A possible different 
approach is represented e.g. by determination of stabilizing 
controllers [12], [13] and additional verification of control 
system robustness [14], [15]. 

This paper deals mainly with software implementation of 
selected digital self-tuning control algorithms into the Matlab 
and Pascal environment for the purpose of possible industrial 
utilization. The work was motivated by co-operation with a 
manufacturer of aluminium-based rolled products and 
packaging materials. His project has supposed primarily the 
application of discrete-time adaptive compensator to control 
of a metal smelting furnace. Other requirements were the plant 
model with “a2b3” structure and final implementation in 
Borland Pascal (because of integration into the existing 
system). However, the paper presents not only derived 
relations applicable to Pascal environment but also program 
for simulative purposes and testing created under Matlab and 
some preliminary simulation results. The primary digital self-
tuning control approach has included a polynomial method to 
discrete-time control design and recursive least-squares 
identification algorithm LDDIF. Furthermore, two alternative 
techniques, namely control using continuous-time regulator 
with fixed parameters and use of delta approach in self-tuning 
control, have been studied. Even though all the tasks were 
motivated by the specific problem, the paper tries to present it 
in more or less generally applicable way. 

The previous versions of this work have been presented at 
conferences [16]-[18] and as the chapter in the book [19]. 

The work is organized as follows. In Section II, the main 
principles of digital self-tuning control as well as the basics of 
polynomial synthesis are described and the “Pascal-friendly” 
rules for computation of controller parameters are derived. The 
Section III then focuses on the recursive least-squares algorithm 
with exponential and directional forgetting LDDIF. The 
following Section IV presents implementation of the control 
and identification algorithms into the Matlab environment and 
demonstrates its capabilities by means of preliminary simulation 
example. Further, two alternative approaches including design 
of fixed continuous-time controller and control synthesis using 
delta models can be found in the extensive Section V. And 
finally, Section VI offers some conclusion remarks. 
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II. POLYNOMIAL SYNTHESIS IN DISCRETE-TIME DOMAIN 
The basic principle of applied self-tuning control scenario 

consists in consecutive identification of the controlled process 
using a recursive algorithm (see the following Section III) and 
application of obtained plant parameters in computing the 
control law. The control design itself has been based on 
algebraic approach and pole placement [20]-[23]. 

In spite of the existence of more complex control 
configurations, only the very basic single-input single-output 
(SISO) control loop with one degree of freedom has been 
assumed. This classical feedback connection in a discrete-time 
sense is shown in Fig. 1. 
 
 
w(k) e(k) u(k) y(k)

- 
−1( )C z  −1( )G z  

 
Fig. 1 discrete-time feedback control loop 

 
The signals w(k), e(k), u(k) and y(k) from Fig. 1 represent 

reference value, tracking (control) error, actuating 
(manipulated) signal and controlled (output) variable, 
respectively, and blocks 1( )C z−  and 1( )G z−  mean discrete-
time transfer functions of a controller and controlled system. 

According to project requirements a controlled plant is 
supposed to has an “a2b3” structure, i.e. its transfer function 
is: 

 
1 1 2 3

1 1 2 3
1 1 2

1 2

( )( )
( ) 1

b z b z b z b zG z
a z a z a z

− − − −
−

− − −

+ += =
+ +

 (1) 

 
A suitable controller which ensures stabilization of the 

whole control loop (Fig. 1) and asymptotic tracking of 
stepwise reference variable can be obtained by solution of 
Diophantine equation [20], [21]: 

 
1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )a z f z p z b z q z m z− − − − − −+ =  (2) 

 
where 1( )a z− , 1( )b z−  are from the controlled system (1), and 

1( )p z− , 1( )q z−  from discrete-time controller: 
 

( )
1 1 2

1 0 1 2
1 1 1 1 2

0 1 2

( )( )
( ) ( ) ( )

q z q q z q zC z
f z p z f z p p z p z

− − −
−

− − − − −

+ += =
+ +

 (3) 

 
and where 1( )f z−  is the denominator of image of stepwise 
reference signal: 

 
1 1

1
1 1

( ) ( )( )
( ) 1

h z h zW z
f z z

− −
−

− −= =
−

 (4) 

 
Moreover, right-hand polynomial 1( )m z−  from (2) is a stable 
polynomial of appropriate order. Thus the equation (2) takes 

here the specific form: 
 

( )( )( )
( )( )

1 2 1 1 2
1 2 0 1 2

1 2 3 1 2
1 2 3 0 1 2

1 2 3 4 5
0 1 2 3 4 5

1 1a z a z z p p z p z

b z b z b z q q z q z

m m z m z m z m z m z

− − − − −

− − − − −

− − − − −

+ + − + + +

+ + + + =

= + + + + +

 (5) 

 
The aim is to calculate coefficients of 1( )p z− , 1( )q z−  to get 

the controller (3). A simple method for finding the particular 
solution of Diophantine equation (5) grounds in the 
comparison of coefficients with the same power and 
consequent transformation of (5) into the set of six equations 
with six unknowns. This set can be written in a matrix form as 
follows: 

 
00

1 1 11

2 1 1 2 1 22

2 2 1 1 3 2 1 30

2 2 1 3 2 41

2 3 52

1 0 0 0 0 0
1 1 0 0 0

1 1 0
1

0 0
0 0 0 0

mp
a b mp

a a a b b mp
a a a a b b b mq

a a a b b mq
a b mq

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟− −

=⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟− −
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (6) 

 
Solving the equation system (6) would be an easy task in 

many software packages. However, the final implementation 
of control algorithm in Borland Pascal environment was 
required by assignment and so the analytical solution of (6) 
had to be derived in order to be easily programmable. Thus, 
the utilizable controller parameters are computed according to: 

 

( )

0 13 12

1 14 12

2 15 12

0 0

1 2 1 0

2 2 3 5 2

q x x
q x x
q x x
p m
p x b q
p q b m a

=
=
=
=
= −
= −

 (7) 

 
where auxiliary variables are: 
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( )
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( )
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( )
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2
3 2 4 2 2 2 1 5 1

2
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6 0 2 1 2 1 2
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11 3 0 2 2 2 2 1 5 1 2 5 2

12 4 1 10 7

1
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x a m a x a a m x

x a b x
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= − +
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=

=
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x x x

+ − − −

 (8) 
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10 5 8

14 4 8 10 7 11 9 3 3 2 8 9 3 2 11 4
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15 4 1 11 7 2 3 9 5 8 3 1 9 8 2 4 11 5 7
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The coefficients of 1( )m z−  can be used for controller tuning 

and thus for influencing the closed-loop control behaviour. 
The suitable choice of the roots of the closed-loop 
characteristic polynomial 1( )m z−  is known as pole placement 

problem. Anyway, this case of fifth order 1( )m z−  can be 
easily “degraded” to the lower order ones by equalling the 
appropriate coefficients to zero. The special events are 
represented by dead-beat control for 1( ) 1m z− =  or by linear 

quadratic (LQ) control for 1( )m z−  given by means of 
minimizing the LQ criterion [8], [9], [24]. 

Finally, the calculated parameters (7) are applied to 
programmable control law which corresponds to the controller 
(3) and which generates the control signal u(k). It can be 
formulated as: 

 
( ) ( )0 1 1 2

0
2 0 1 2

( 1) ( 2)
( )

( 3) ( ) ( 1) ( 2)
p p u k p p u k

u k p
p u k q e k q e k q e k

⎡ − − + − − + ⎤
= ⎢ ⎥− + + − + −⎣ ⎦

 (9) 

 
Interested reader can find more information on algebraic 

methods and their application in analysis and synthesis of 
control systems e.g. in [20], [21], [25]-[27]. 

III. RECURSIVE IDENTIFICATION ALGORITHM 
A LDDIF routine has been used as plant parameters 

identification technique for combination with algebraic 
synthesis from the previous Section in order to obtain self-
tuning controller. It is recursive least-squares algorithm with 
exponential and directional forgetting [28]. Moreover, the 
corrections influencing the covariance matrix ( )kP  of the 
estimated parameters by adding some multiple of identity 
matrix, which have been suggested in [29], are implemented 
to improve the tracking performance. The algorithm can be 
described by equations [30]: 

 

1
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( ) ( ) ( 1) ( )

( 1) ( )( )
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1 if ( ) 0
( )( )

1 if ( ) 0

( 1) ( ) ( ) ( 1)( ) ( 1)
( ) ( )

( ) ( 1) ( ) ( )

T

T

T

k k k k
r k k k k

k kk
r k

r k
r kk

r k

k k k kk k
k r k

k k k k

ε

ϕϕ
β

δ
β

ε

−

= − −
= −

−=
+

−⎧ − >⎪= ⎨
⎪ >⎩

− −= − − +
+

= − +

y
P

P

P PP P I

Φ θ
Φ Φ

Φκ

Φ Φ

θ θ κ

 (10) 

 

where: 
 

[
]

( ) ( 1) ( 2)

( 1) ( 2) ( 3)

k y k y k

u k u k u k

= − − − −

− − −

Φ  (11) 

 
is observation vector and: 

 
[ ]1 2 1 2 3( ) ( ) ( ) ( ) ( ) ( )k a k a k b k b k b kθ =  (12) 

 
is vector of parameters. The term ϕ  then represents 
exponential forgetting factor. The initial values for the 
algorithm are usually preset to 0.985ϕ = , 6(0) 10=P I  and 

0.01δ = . 
The main complication from the implementation viewpoint 

has been the arduousness in working with matrices. 

IV. SOFTWARE IMPLEMENTATION 
As it was outlined before, Borland Pascal had to be 

supposed for final application under real industrial conditions 
because of easy implementation into the existing system. 
However, several preliminary tests, algorithm verifications 
and simulations were done in Matlab environment due to 
better convenience for these testing purposes. As a result, a 
simple program has been created. Its main window is shown 
in Fig. 2. The Matlab represents very popular and effective 
programming and simulation environment for many various 
theoretical and application disciplines as demonstrated e.g. in 
[31]. 
 

 
Fig. 2 main window of the preliminary simulation program in Matlab 

 
Initial supportive control and identification experiments for 

sampling time 45sT =  have led to parameters of controlled 
system (1): 
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The closed-loop characteristic polynomial has been 

supposed as: 
 

1 1 2 3 4

5

( ) 1 2.45 2.22 0.907 0.1601
0.008925

m z z z z z
z

− − − − −

−

= − + − + −  (14) 

 
which means that the poles of the closed loop transfer function 
(Fig. 1) have been placed to: 

 
1

2

3

4

5

0.85
0.7
0.5
0.3
0.1

r
r
r
r
r

=
=
=
=
=

 (15) 

 
Simulation result of control behaviour is depicted in Fig. 3. 

The huge overshoot in the beginning of the control process is 
caused by incomplete identification stage. The parameters of 
the controlled system were assumed to be unknown and preset 
to random starting values (as demonstrated in window from 
Fig. 2). The progress in identification of these parameters 
during control is shown in Fig. 4 with zoomed x-axis. As can 
be clearly seen, the plant parameters were properly identified 
after several initial steps and thanks to this the control 
response from Fig. 3 is much better at the middle step change 
of reference signal. 
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Fig. 3 control of plant using discrete-time self-tuning controller – 
simulation 
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Fig. 4 development of the identified parameters 

 

V. ALTERNATIVE APPROACHES 
In spite of the fact that preliminary control simulations from 

the previous Section IV have brought satisfactory results, two 
technically different approaches have been studied, i.e. control 
using continuous-time regulator with fixed parameters and 
application of delta approach in self-tuning control scenario. 
The main motivation for these investigations consisted in use 
of shorter sampling time. 

A. Fixed Continuous-Time Controller 
First alternative technique to control synthesis has been 

based on the similar algebraic tools as described in Section II 
[21], but now in continuous-time representation. Moreover, 
one off-line controller with fixed parameters has been tuned 
and due to this fact no recursive identification for adaptation 
reasons was needed anymore. 

Primarily, the discrete-time model (1) with identified 
parameters (13) was transformed into continuous-time model 
suitable for linear Diophantine equations (which means 
without time-delay term). This has been performed very 
simply by using the first order Taylor approximation of time-
delay term in denominator: 

 
1 2 3 1 2

1 11 2 3 1 2 3
1 2 1 2

1 2 1 2
2

45
2

2

3 2

( )
1 1

0.327 0.0289 0.001746
0.04385 0.0001141

0.007267 0.0006423 0.0000388 ( )
0.06607 0.001089 0.000002535

s

b z b z b z b b z b zG z z
a z a z a z a z

s s e
s s

s s G s
s s s

− − − − −
− −

− − − −

−

+ + + += = ⇒
+ + + +

− − +
⇒ ≈

+ +
− − +≈ =
+ + +

 (16) 

 
Correspondence of 1( )G z−  and ( )G s  is demonstrated in 

Fig. 5 where step responses of both models are compared. 
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Fig. 5 comparison of step responses of discrete-time and continuous-
time models 

 
The control design itself starts from continuous-time 

version of Diophantine equation (2): 
 

( ) ( ) ( ) ( ) ( ) ( )a s f s p s b s q s m s+ =  (17) 
 

where analogically to Section II: 
 

3 2

2

( ) 0.06607 0.001089 0.000002535
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a s s s s
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 (18) 

 
and where closed-loop characteristic polynomial has been 
assumed: 

 
6 5 4 3

6 2 8 11
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i.e. its roots are: 
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The final continuous-time controller has been calculated as: 
 

3 2 7

3 2
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q sC s
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Supposing the derivative approximation (e.g. here for 

tracking error e): 
 

( ) ( ) ( 1)de t e k e k
dt T

− −≈  (22) 

 
leads to “emulation” of continuous-time (21) suitable for 
Borland Pascal environment. Thus, the control law can be 
accomplished by relation: 
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T q e k e k T q e k
u k u k u k

Tp u k u k T p u k
u k

Tp T p
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⎢ ⎥− − + +⎢ ⎥
⎢ ⎥− − − + − −
⎢ ⎥

− − + − + −⎢ ⎥⎣ ⎦=
+ +

 (23) 

 
Symbol T in (22) and (23) represents sampling time, usually 

very short one, because the shorter sampling period means the 
closer approximation of continuous-time controller (21) by the 
equation (23). From the practical point of view, the sampling 
time must be adjusted according to available hardware 
possibilities. 

Results of control simulation are visualized in Fig. 6. 
 

0 200 400 600 800 1000 1200 1400 1600 1800
-0.5

0

0.5

1

1.5

2

2.5

Time [s]

R
ef

er
en

ce
, C

on
tro

lle
d,

 a
nd

 A
ct

ua
tin

g 
S

ig
na

ls

y(t)
w(t)
u(t)

 
Fig. 6 control of plant using continuous-time controller – simulation 

 

B. Control Design Using Delta Models 
Another alternative to avoid potential problems with long 

sampling periods consists in usage of delta models. They act 
as a bridge between discrete-time and continuous-time 
representations and eliminate objectionable numerical 
properties of discrete-time models under short sampling times. 
Originally, the delta operator has been defined in [32]: 

 
1z

T
δ −=  (24) 

 
Consequent generalization of such models with complex 

variable γ  has been published in [33]. It has proved that all 
operators: 
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( )
1 ; 0 1

1
z
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γ λ

λ λ
−= ≤ ≤

+ −
 (25) 

 
converge to derivation. Three most common cases are for 

0λ =  (forward model): 
 

1z
T

γ −=  (26) 

 
1λ =  (backward model): 

 
11 z

T
γ

−−=  (27) 

 
and 0.5λ =  (Tustin approximation): 

 
2 1

1
z

T z
γ −=

+
 (28) 

 
The PID-B2 controller [8], [9], [34] has been utilized in this 

method. It is based on structure developed in [35] which is 
shown in Fig. 7. 
 
 

- 

w(k) e(k) u(k) y(k)

- 
γ
1
( )p

 γ
γ

( )
( )
b
aβ  

γ′( )q  

 
Fig. 7 closed loop with PID-B controller 

 
The controlled plant from Fig. 7 is supposed as: 
 

1 0
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( )
( )

b b b
a a a

γ γ
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+=
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 (29) 

 
and controller polynomials are: 
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p

q q q

γ γ γ λ
γ γ γ

= +
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Generally, closed-loop characteristic polynomial of the 

connection in Fig. 7 is: 
 

[ ]( ) ( ) ( ) ( ) ( )a p b q mγ γ γ γ β γ′+ + =  (31) 
 

And more specifically, it is assumed to have the form: 
 

( ) ( ) ( )2( )m j jγ γ α γ α ω γ α ω= − ⎡ − + ⎤ ⎡ − − ⎤⎣ ⎦ ⎣ ⎦  (32) 

 
The parameter α  can serve for changing speed of control 

process and “aggressiveness” of actuating signal, while ω  is 

useful for selecting size of overshoot. 
However, for the sake of control loop stability, roots of the 

polynomial (32) must always lie inside the circle with centre 
in 1 T−  and the same radius (the circle goes through the 
origin of the complex plane). 

Thus, adjusted characteristic polynomial can be written as 
[34]: 
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More convenient matrix form is: 
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⎜ ⎟
⎝ ⎠

 (34) 

 
Analytical solution suitable for Pascal implementation can 

look like: 
 

( )
( )

4

3
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1 2
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1 1
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1

r

l

r r

r

r

x
x
a x b a b x

q
a b b a b b

x b q
a

x bq
b

β

λ

β λ

=

− −′ =
− −

−=

− −′ =

 (35) 

 
where auxiliary variables are: 

 

( )
( )

1
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0 1
2 2

0
3 2

1 1
2 2

2 0

2 2
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2 2 2
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2
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2 2

l

l
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r

r

r

r

bx b
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b bx
T T
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T

x a

x a

x

x

α
α ω

α α ω

α α ω

= +

= +

=

= − −

= + −

= − +

= +

 (36) 

 
and 
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5 0 1 1 2 0 1 1 1

6 3 2

r r r l

r r l

x b x b x b b b x
x x x

β β
β

= − + + −
= −

 (37) 

 
The final control law is then generated by: 
 

[ ]
[ ] [ ]

2

1

( ) ( ) ( ) 2 ( 1) ( 2)

( 1) ( 2) ( 1) ( 2)
2 ( 1) ( 2)

u k e k q y k y k y k

q T y k y k T u k u k
u k u k

β
λ

′= − − − + − −

′ − − − − − − − +
− − −

 (38) 

 
while the vector of parameters: 

 
[ ]1 0 1 0( ) ( ) ( ) ( ) ( )k a k a k b k b kθ =  (39) 

 
is identified using the same recursive algorithm as described 
in Section III. The only modifications necessary because of 
delta representation are that measured output ( )y k  is replaced 
by the ratio: 

 
[ ] 2( ) 2 ( 1) ( 2)y k y k y k T− − + −  (40) 

 
and that the observation vector has the form: 

 
( )

( )
( ) ( 1) ( 2) ( 2)

( 1) ( 2) ( 2)

k y k y k T y k

u k u k T u k

= ⎡− − − − − −⎣
− − − − ⎤⎦

Φ  (41) 

VI. CONCLUSION 
This paper has been focused mainly on preliminary 

software implementation of digital self-tuning controllers into 
the Matlab (for simulative and testing purposes) and Pascal 
(for real application) environment. The motivation to this task 
as well as basic conditions and restrictions have been based on 
technical assignment of a manufacturer of aluminium-based 
products related to control of a metal smelting furnace. In the 
first instance, the applied techniques have comprised a 
polynomial approach to discrete-time control design and 
recursive least-squares identification algorithm LDDIF. On 
top of that, continuous-time controller with fixed parameters 
and delta approach in self-tuning control scenario have been 
studied. 
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