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Learning the Value of a Function by Using
Hypercircle Inequality for Data Error
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Abstract—In this paper, we briefly review Hypercircle inequality
for data error (Hide) measured with square loss. We provide it in the
case that the unit ball B is replaced by δB where δ is any positive
number. Moreover, we also discuss some important facts of Hide for
practical computation and study the problem in learning the value of
a function in reproducing kernel Hilbert space (RKHS) by using the
available material from Hide with different values of δ. We compare
our numerical experiment to the method of regularization, which is
the standard method for learning problem.
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I. INTRODUCTION

IN this paper, we briefly review Hypercircle inequality for
data error (Hide) measured with square loss [2], [8]. We

provide it in the case that the unit ball B is replaced by δB
where δ is any positive number. Moreover, we also discuss
some important facts of Hide for practical computation and
study the problem in learning the value of a function in re-
producing kernel Hilbert space (RKHS) by using the available
material from Hide with different values of δ. We compare our
numerical experiment to the method of regularization, which
is the standard method for learning problem.

Given an input-output examples {(tj , dj) : j ∈ Nn} ⊆
T × R where T is an input set, and we use the notation
Nn = {1, 2, ..., n}. The basic idea in learning problem is
to determine a functional representation from data. Let the
hypothesis space H be a reproducing kernel Hilbert space
(RKHS) of real value function on a set T . That is, f : T → R
is the functional in the hypothesis space H, and dj is a data
representation of f(tj) for all j ∈ Nn. The real function
K of t and s in T is called a reproducing kernel of H if
the following property is satisfied for every t ∈ T and every
f ∈ H

f(t) = ⟨f,Kt⟩

where Kt is the function of s ∈ T and Kt(s) = K(t, s).
Therefore, for any s, t ∈ T

K(s, t) = ⟨Ks,Kt⟩
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By the obove relations, for t ∈ T we also obatin that

||Kt||2 = ⟨Kt,Kt⟩ = K(t, t)

The Aronszajn and Moore theorem [1] states that a function
K : T × T −→ R is a reproducing kernel for some RKHS
if and only if for any inputs T = {tj : j ∈ Nn} ⊆ T the
n × n matrix G = (K(ti, tj) : i, j ∈ Nn) is a positive semi-
definite. That is, for any T = {tj : j ∈ Nn} ⊆ T and any
a = (a1, ..., an) ∈ Rn∑

i,j∈Nn

ajaiK(tj , ti) ≥ 0.

Moreover, for any kernel K there is a unique RKHS with K as
its reproducing kernel. These important and useful facts allow
us to specify a hypothesis space by choosing K.

Alternatively, we consider here the following point of view.
Given t0 ∈ T , we want to estimate f(t0) knowing that
||f ||K ≤ δ and |d − Qf |22 ≤ ε where Qf := (f(tj) =
⟨f,Ktj ⟩ : j ∈ Nn) and | · |2 is a Euclidean norm on Rn.
The standard method for learning f(t0) is the method of
regularization, [5], [6]. Given ρ > 0, we choose the function
which minimize from the Rρ functional defined for f ∈ H as

Rρ(f) := |d−Qf |22 + ρ||f ||2K . (1)

According to Representer Theorem [3], [10], [11], [12], the
function which minimizes (1) has the form

fρ(t) =
∑
j∈Nn

c(ρ)jK(tj , t), t ∈ T (2)

for some real vector c(ρ) = (G + ρI)−1d where I is n × n
identity matrix and G = (K(ti, tj) : i, j ∈ Nn). We choose
fρ(t0) as our estimator. Consequently, we let ε2ρ := |d−Qfρ|22
and δ2ρ := ||fρ||2K . Next, we want to compare this method
to the midpoint algorithm. We then define the interval of
uncertainty

I(t0, ερ, δρ) = {f(t0) : |d−Qf |2 ≤ ερ, ||f ||K ≤ δρ}.

Hence, the best choice for this number is a function whose
values at t0 is midpoint of the interval I(t0, ερ, δρ). To
compare both methods, regularization method and midpoint
algorithm, we need to show that the regularization estimator
fρ(t0) can be view as an element in the interval I(t0, ερ, δρ).
According to our previous work, we found that there is only
one element, namely, fρ(t0) in I(t0, ερ, δρ). Therefore, our
strategy to compare the regularization and midpoint estimator
must consider a bigger value of ερ and δρ. For this reason, we
shall discuss and continue report some results from numerical
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experiments of learning the value of function in RKHS by
midpoint algorithm with different values of δ

The organization of this paper is as follows. In Section II, we
briefly review Hypercircle inequality for data error measured
with square loss and discuss what we need for Section III.
Moreover, we will give some important fact of Hide for
practical computation. In section III contains some results of
numerical experiments of learing the value of a function in
RKHS. Specificalily, we consider the data error measured with
square loss.

II. HYPERCIRCLE INEQUALITY FOR DATA ERROR

In this section we begin with Hilbert space H over the real
number with inner product ⟨·, ·⟩. We choose a finite set of
linearly independent elements X = {xj : j ∈ Nn} in H . We
shall denote by M the n−dimensional linear subspace of H
spanned by the vectors in X . Let Q : H → Rn be a linear
operator H onto Rn, which is defined for any x ∈ H as

Qx = (⟨x, xj⟩ : j ∈ Nn). (3)

Alternatively, the adjoint map QT : Rn −→ H is given at
a = (aj : j ∈ Nn) ∈ Rn as

QTa =
∑
j∈Nn

ajxj (4)

and the Gram matrix of the vectors in X is

G = QQT =


⟨x1, x1⟩ ⟨x1, x2⟩ ... ⟨x1, xn⟩
⟨x2, x1⟩ ⟨x2, x2⟩ ... ⟨x2, xn⟩

...
...

...
...

⟨xn, x1⟩ ⟨xn, x2⟩ ... ⟨xn, xn⟩


which is a symmetric and positive definite. To prove this, we
let 0 ̸= a ∈ Rn and we have that

aTGa = aTQQTa

= (a,QQTa)

= ⟨QTa,QTa⟩ = ||QTa||2 > 0.

Therefore, G is a positive definite matrix. Next, let us review
basic facts about Hi, [2], [9], and discuss what we need for
Hide.

Theorem 1: Let X = {xj : j ∈ Nn} be set of linearly
independent elements in H . Then given any d ∈ Rn we can
find an element x(d) ∈ R(QT ) such that

Qx(d) = d.

Moreover, we have that x(d) = QTG−1d.

Proof. We refer the reader to [2] for the proof.

Moreover, from this formula we obtain the useful equation

min{||x|| : x ∈ H,Qx = d} = ||x(d)||
=

√
(d,G−1d). (5)

Definition 2: Let H be the Hilbert space over the real
number and X = {xj : j ∈ Nn} be a finite set of linearly

independent elements in H. Let d be a given vector in Rn, and
δ be a positive number. The hypercircle, H(d, δ) is a subset
of H, which is defined by

H(d, δ) = {x : x ∈ δB,Qx = d}.

where B := {x : x ∈ H, ||x|| ≤ 1} is the unit ball in H.
We point out that the hypercircle H(d, δ) is a convex subset
of H which is sequentially compact in the weak topology on
H.

Theorem 3: If d ∈ Rn then H(d, δ) ̸= ∅ if and only if

||x(d)|| =
√
(d,G−1d) ≤ δ.

Moreover, in this case x(d) ∈ H(d, δ).

Proof. Suppose that H(d, δ) ̸= ∅, contains an element x. Let
e = x− x(d) and we observe that

||x− x(d)||2 = ||x||2 − 2⟨x, x(d)⟩+ ||x(d)||2

= ||x||2 − 2⟨x− e, x(d)⟩+ ||x(d)||2

= ||x||2 − ||x(d)||2.

Therefore, ||x(d)|| ≤ δ and ||x(d)|| =
√
(d,G−1d) ≤ δ.

Conversely, suppose that ||x(d)|| =
√

(d,G−1d) ≤ δ. By
Theorem 1, we obtain that x(d) ∈ H(d, δ). �

Theorem 4: If H ̸= M then H(d, δ) consists of exactly one
point if and only if ||x(d)|| = δ.

Proof. Suppose that H(d, δ) consists of exactly one point x.
Choose any w ∈ H such that Qw = 0 . Therefore, for any
t ∈ R \ {0} we conclude that ||x+ tw|| > δ. This inequality
implies that ||x|| = δ. We see that

||x+ tw||2 = ||x||2 + 2t⟨x,w⟩+ t2||w||2

= ||x||2 + t(2⟨x,w⟩+ t||w||2).

If we choose t = −2⟨x,w⟩
||w||2 , then ||x|| > δ which is a

contradiction. Thus, we have that ⟨x,w⟩ = 0. From the
second conclusion we learn that x ∈ M . Consequently,
we see that x = x(d) , so that ||x(d)|| = δ. Conversely,
suppose that ||x(d)|| = δ and x ∈ H(d, δ). Then the
vector e := x − x(d) has the property that Qe = 0. As
a result we conclude that ⟨e, x(d)⟩ = 0. Consequently,
we get that ⟨x, x(d)⟩ = ⟨x − e, x(d)⟩ = ||x(d)||2 and so
||e||2 = ||x||2 − ||x(d)||2 ≤ 0. This confirms the fact that
x = x(d). �

We add one final remark before providing the material of
Hypercircle inequality for data error. If H = M then H(d, δ)
consists of at most one point, namely x(d).

Now we ready to describe Hypercircle inequality for data
error (Hide). We provided it in the case that the data error
is measured with Euclidean norm. We refer the reader to
the paper [8] for more information about the proof of Hide
measured with any norm on Rn.
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Definition 5: Let H be the Hilbert space over the real
number and X = {xj : j ∈ Nn} be a finite set of linearly
independent elements in H. Let E = {e : e ∈ Rn, |e|2 ≤ ε}
where | · |2 : Rn → R+ is a Euclidean norm on Rn and
ε is some prescribed positive number. Let d be a given
vector in Rn, and δ be a positive number. The hyperellipse,
H2(d|E(δ)) is a subset of H, which is defined by

H2(d|E(δ)) = {x : x ∈ δB,Qx− d ∈ E}.

Moreover, we observe that

H2(d|E(δ)) =
∪
e∈E

H(d+ e, δ). (6)

Since the vector d ∈ Rn and ε are prescribed, we start out
by giving the formula for choosing the value of δ such that
H2(d|E(δ)) ̸= ∅. We then begin with the following lemma.

Lemma 6: For any d ∈ Rn,

min{||x|| : |d−Qx|2 ≤ ε} =

min{
√

(d+ εc,G−1(d+ εc)) : c ∈ Rn, |c|2 ≤ 1}.

Proof. From the equation (5) and (6), we obtain that

min{||x|| : |d−Qx|2 ≤ ε} =

min{
√

(d+ εc,G−1(d+ εc)) : c ∈ Rn, |c|2 ≤ 1}.

�

Lemma 7: H2(d|E(δ)) ̸= ∅ if and only if

min
|c|2≤1

(d+ εc,G−1(d+ εc)) ≤ δ2. (7)

Proof. Let x ∈ H2(d|E(δ)). Then there is e ∈ E such that
x ∈ H(d + e, δ) and x = x(d + e) = QTG−1(d + e). Thus,
we see that

||x(d+ e)||2 = ⟨x(d+ e), QTG−1(d+ e)⟩
= (d+ e,G−1(d+ e)) ≤ δ2. (8)

Hence, min{(d + εe,G−1(d + εe)) : |e|2 ≤ 1} ≤ δ2.
Conversely, (7) and (8) certainly implies H2(d|E(δ)) ̸= ∅. �

Next, we will give the formula for checking when
H2(d|E(δ)) ̸= ∅. We then begin with the following definition.

Definition 8: Let A be an n×n symmetric matrix and d ∈
Rn . The spectrum of the pair (A, d) is defined to be the set
of all real numbers Λ for which there exists an x ∈ Rn with
Euclidean norm one such that

A(x− d) = Λx. (9)

Let
0 < λ1 ≤ λ2 ≤ ... ≤ λn be eigenvalue of G−1, {uj : j ∈ Nn}
be a corresponding orthonormal set of eigenvector , write
the vector d in the form d =

∑
j∈Nn

γju
j for some constants

γj ∈ R and define the subset I of Nn by I := {j : λjdj = 0}.

Lemma 9: If Λ is the least value in the spectrum of the pair
(ε2G−1, d

ε ) then

min
|c|2≤1

(d+ εc,G−1(d+ εc)) = Λ + Λ
∑
j /∈I

λj |γj |2

Λ− ε2λj
.

Proof. We refer the reader to the paper [4] for the proof.

Alternatively, we can conclude that H2(d|E(δ)) ̸= ∅ if
δ ≥ Λ + Λ

∑
j /∈I

λj |γj |2
Λ−ε2λj

.

As we want to find the best estimator to optimally estimate
one feature of x ∈ H2(d|E(δ)) when we define a feature
of x ∈ H as the value a linear functional Fx0 defined at
x as Fx0

(x) = ⟨x, x0⟩. We then define the uncertainty set
by I(x0, d|E(δ)) = {Fx0(x) : x ∈ H2(d|E(δ))}. Since
H2(d|E(δ)) is convex subset of H which is sequentially com-
pact in the weak topology on H, we obtain that the uncertainty
set is a closed and bounded interval in R. Consequently, we
have

I(x0, d|E(δ)) = [m−(x0, d|E(δ)),m+(x0, d|E(δ))]

where

m+(x0, d|E(δ)) = max{Fx0(x) : x ∈ H2(d|E(δ))}

and

m−(x0, d|E(δ)) = min{Fx0(x) : x ∈ H2(d|E(δ))}.

Hence, the best estimator is the midpoint of this interval.
According to our pervious work, we have the important
theorem which obtain the midpoint of this interval.

Theorem 10: If H2(d|E(δ)) ̸= ∅ then there is an element
e0 ∈ E such that x(d+e0) is the best estimator for the feature
Fx0 .

Proof. We refer the reader to the paper [8] for the proof.

Remark that x(d + e0) = QTG−1(d + e0) ∈ M for some
e0 ∈ E. That is, we can see that the best estimator has the
form of Representer Theorem .

Next, let us point out some important facts that

m−(x0, d|E(δ)) = min{Fx0(x) : x ∈ H2(d|E(δ))}
= min{−Fx0(x) : −x ∈ H2(−d|E(δ))}
= −max{Fx0(x) : x ∈ H2(−d|E(δ))}
= −m+(x0,−d|E(δ)).

To obtain the midpoint, we then only need to evaluate the two
numbers m+(x0,±d | E((δ))) and then compute the midpoint

m(x0, d|E(δ)) =
1

2

(
m+(x0, d | E(δ))−

m+(x0,−d | E(δ)
)
. (10)
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Next, we will describe a duality formula for the right hand
side of the interval of uncertainty. We start out by introducing
the convex function Vδ : Rn → R defined for c ∈ Rn

Vδ(c) := δ||x0 −QT c||+ ε|c|2 + (c, d). (11)

Next, let us describe the sufficient condition on H2(d|E(δ))
such that Vδ has a minimum.

Theorem 11: If H2(d|E(δ)) contains more than one point
then the function Vδ has a minimum and every minimizing
sequence is bounded.

Proof. We refer the reader to the paper [8] for the proof.

In our theorem below, we shall provide the conditions
such that the function Vδ achieves its minimums at 0.

Theorem 12: If x0 ̸= 0 then the following statement are
equivalent:
(i) 0 = arg min{Vδ(c) : c ∈ Rn}.
(ii)

δx0

||x0||
∈ H2(d|E(δ)).

(iii)
δx0

||x0||
= arg max{⟨x, x0⟩ : x ∈ H2(d|E(δ))}.

Proof. The equation (i) holds if and only if ||x0|| = Vδ(0) ≤
Vδ(c) for all c ∈ Rn. Since the function Vδ is a convex this
inequality holds if and only if for all c ∈ Rn

−ε|c|∗ − (c, d) ≤ inf{δ||x0 − λQT c|| − δ||x0||
λ

: λ > 0}

which means for all c ∈ Rn that

−ε|c|∗ − (c, d) ≤ −(δ
Qx0

||x0||
, c).

That is , we have that

(δ
Qx0

||x0||
− d, c) ≤ ε|c|∗.

which is equivalent to saying that |δ Qx0

||x0|| − d|2 ≤ ε. This

establishes that
δx0

||x0||
∈ H2(d|E(δ)) and the equivalence of

(i) and (ii). Now, we establish that (ii) and (iii) are also the
same. Certainly, by the definition of ”arg max” (iii) implies
(ii). Conversely, if (ii) is true then we have that

||δx0|| = ⟨x0, δ
x0

||x0||
⟩ ≤ m+(x0, d|E) ≤ δ||x0||

where the last inequality follows from the fact that
H2(d|E(δ)) ⊆ δB. Hence (iii) holds. �

Now we ready to state the sufficient condition on
H2(d|E(δ)) which ensure that the minimum 0 ̸= c∗ ∈ Rn is
unique solution of the function Vδ.

Theorem 13: If H2(d|E(δ)) contains more than one point,
x0 /∈ M, and δx0

∥x0∥ /∈ H2(d|E(δ)) then

m+(x0, d|E(δ)) = min
c∈Rn

Vδ(c).

Moreover, the minimum c∗ ∈ Rn is the unique solution of the
nonlinear equation

−δQ(
x0 −QT c∗

||x0 −QT c∗||
) + ε

c∗

|c∗|2
+ d = 0 (12)

and

x+(d) := δ
x0 −QT c∗

||x0 −QT c∗||
(13)

satisfies

x+(d) = arg max{Fx0(x) : x ∈ H2(d|E(δ))}. (14)

Proof. We refer the reader to the paper [8] for the proof.

According to our previous work [8], we found that if
H2(d|E(δ)) contains only one element then the convex
function Vδ above does not assume its minimum.

Example. Let H = R2, x1 = (1, 0), d = 1 + ε , x0 = (1, 1)
, δ = 1 and ε > 0 then H2(d|E(δ)) = {(1, 0)} and
m+(x0, d) = 1. On the other hand, we see that for all c ∈ Rn

Vδ(c) =
√

1 + (1− c)2 + (1 + ε)c+ ε|c|.

We observe that the map c →
√
1 + (1− c)2+(1+ε)c+ε|c|

is increasing. Next, we claim that inf{
√
1 + (1− c)2 + (1 +

ε)c+ ε|c| : c ∈ R} = 1. This follows from the fact that

lim
c→−∞

√
1 + (1− c)2 + (1 + ε)c+ ε|c| = 1.

Therefore, inf{
√

1 + (1− c)2 + (1 + ε)c+ ε|c| : c ∈ R} = 1
and the infimum is not achieved.

To this end, let us point out the condition which ensure
that H2(d|E(δ)) contains more than one point.

Theorem 14: . If H ̸= M and there exists e ∈ E such that
x(d+ e) ∈ H2(d|E(δ)) such that ||x(d+ e)|| < δ then there
is an infinite number of vectors in H2(d|E(δ)).

Proof. Since H ̸= M, we choose any w ∈ H such that Qw =
0 and ||w|| = 1. Using our assumption, we have that there
exists e ∈ E such that x(d + e) ∈ H2(d|E(δ)) and ||x(d +
e)|| < δ. Moreover, we know that x(d + e) ∈ M. Next we
define y = x(d + e) + tw for some t ∈ R. We observe that
Qy − d = Qx(d+ e)− d ∈ E. Next, we see that

||y||2 = ||x(d+ e)||2 − 2⟨x(d), w⟩+ t2||w||2

= ||x(d+ e)||2 + t2||w||2

< ||x(d+ e)||2 + t.

Since ||x(d + e)|| < δ, there is an infinite number of
t such that ||y||2 < ||x(d + e)||2 + t < δ2. Therefore,
y ∈ H2(d|E(δ)). Hence, there is an infinite number of
vectors in H2(d|E(δ)). �

Theorem 15: If H ̸= M then H2(d|E(δ)) consists of
exactly one point if and only if

min{(d+ εe,G−1(d+ εe)) : e ∈ Rn, |e|2 ≤ 1} = δ2.
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Proof. Suppose that H2(d|E(δ)) consists of exactly the one
point x. From Theorem 4, we obtain that x = x(d + ê) for
some ê ∈ E and ||x(d+ ê)|| = δ. Therefore, we obtain that

min{(d+ εe,G−1(d+ εe)) : e ∈ Rn, |e|2 ≤ 1} = δ2.

Conversely, suppose that min{(d + εe,G−1(d + εe)) : e ∈
Rn, |e|2 ≤ 1} = δ2. Since the map e → (d+εe,G−1(d+εe))
is strictly convex, there is a unique ê ∈ Rn with |ê|2 ≤ 1
such that (d + εê, G−1(d + εê)) = δ2 and H2(d|E(δ)) =
H(d+ ê, δ). Next, we claim that H(d+ ê, δ) consists of one
point. Let x ∈ H(d+ ê, δ) and the vector y := x − x(d+ ê)
has the property that Qy = 0. As a result we conclude that
⟨y, x(d+ ê)⟩ = 0. Consequently, we get that

⟨x, x(d+ ê)⟩ = ⟨x− y, x(d+ ê)⟩ = ||x(d+ ê)||2

By Theorem 4 again, we obtain that ||y||2 =
||x||2 − ||x(d + ê)||2 ≤ 0. This confirms the fact that
x = x(d + ê). Hence,we can conclude that H2(d|E(δ))
consists of exactly one point. �

To this end let us now consider the special case that
{x0} ∪ X is an orthonormal set of vector. We found that
the midpoint of the uncertainty interval is zero, see example
[8]. That is, the right hand endpoint of the interval is an even
function of d ∈ Rn. That is, we have that

m+(x0, d|E(δ)) = m+(x0,−d|E(δ)).

III. NUMERICAL EXPERIMENTS

In this section, we shall continue to report some results
from numerical experiments in learning the value of a function
in RKHS by the midpoint algorithm with different values of δ.
Let H be a reproducing kernel Hilbert space over real numbers
(RKHS). Given any set of points T = {tj : j ∈ Nn} ⊆ T
where T is an input set, the vector {xj : j ∈ Nn} appearing in
Section II is identified with the function {Ktj : j ∈ Nn} where
Ktj (t) = K(tj , t), j ∈ Nn, t ∈ T . The Gram matrix of the
function {Ktj : j ∈ Nn} is given as G = (K(ti, tj))i,j∈Nn .

Next, we choose the exact function g ∈ H and then compute
the vector Dg := (g(tj) : j ∈ Nn). Then, we corrupt the
data by additive noise. Thus, we define d = Dg + e. Indeed,
our problem becomes as follows. Given t0 ∈ T , we want to
estimate f(t0) knowing that ||f ||K ≤ δ and |d − Qf |22 ≤ ε
where Qf := (f(tj) = ⟨f,Ktj ⟩ : j ∈ Nn) and | · |2
is a Euclidean norm on Rn. As we briefly described the
regularization method in Section 1, we give ρ > 0 and we
choose the function which minimizes this functional over H
on the following

|d−Qf |22 + ρ||f ||2K .

Then, we obtain the minimizer function

fρ(t) =
∑
j∈Nn

c(ρ)jK(t, tj), t ∈ T

where (G+ ρI)c(ρ) = d. We choose fρ(t0) as our estimation
and define

ε2ρ = |d−Qf |22 =
∑
j∈Nn

(1− λj

ρ+ λj
)2γ2

j

and

δ2ρ = ∥fρ∥2K =
∑
j∈Nn

λjγ
2
j

(ρ+ λj)2

where 0 ≤ λ1 ≤ ... ≤ λn are the eigenvalues of the Gram
matrix G corresponding to the orthonormal eigenvectors
uj : j ∈ Nn and d =

∑
j∈Nn

γju
j .

As we want to compare this method to the midpoint
algorithm, we then define the interval of uncertainty

I(t0, ερ, δρ) = {f(t0) : |d−Qf |2 ≤ ερ, ||f ||K ≤ δρ}.

Clearly, fρ(t0) in I(t0, ερ, δρ), However, the hyperellipse
H2(d|E(δρ)) consists of only one point, namely fρ. To prove
this, choose any h ∈ H2(d|E(δρ)). This mean that

||h||2K ≤ ||fρ||2K = δρ

and
|d−Qh|22 ≤ |d−Qfρ|22 = ερ.

Consequently, we have that

|d−Qh|22 + ρ||h||2K ≤ |d−Qfρ|22 + ||fρ||2K

Since fρ is unique minimizer of Rρ, h = fρ.

Therefore, our strategy in comparing the regularization
and midpoint estimator, is to consider a bigger value of ερ
and δρ. We choose ε = ερ and δ = αδρ where α is in
A = {1.5, 3, 6, 12, 24}. Consequently, the function Vαδρ in
(11) becomes

Vαδρ(c) := αδρ||x0 −QT c||+ ε|c|2 + (c, d) (15)

and the corresponding hyperellipse is given by

H2(d|E(αδρ)) = {x : ||x|| ≤ αδρ, |d−Qx|2 ≤ ερ}.

For the computation m+(x0,±d|δ, ε), we need to find the
minimum of the function Vαδρ defined for c ∈ Rn as

Vαδρ(c) = αδρ

√
fαδρ(c) + ε

√∑
j∈Nn

c2j ±
∑
j∈Nn

cjdj .

where fαδρ : Rn −→ R and fαδρ(c)

= αδρ

√
K(t0, t0)− 2

∑
j∈Nn

cjK(t0, tj) +
∑

i,j∈Nn

cicjK(ti, tj).

Moreover, we desire here not only to estimate the value of
function f at one t0 but also we estimate the value of function
f at t∗j ∈ T0 where T0 = {t∗j : j ∈ Nk} and T0 ⊆ T \T. To
compare both methods for any point t∗j ∈ T0, we then compute
a sum square error between exact function g at the point t∗j and
the function learned by using regularization estimator fρ(t

∗
j )

and midpoint estimator m(t∗j , d|E(δ)) with different values of
δ. That is, we define the sum square error of the regularization
estimator by

Eρ(T0) =
∑
j∈Nk

|g(t∗j )− fρ(t
∗
j )|2
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and the sum square error of the midpoint estimator by

Em(T0) = max
α∈A

em(T0, d|E(αδρ))

where

em(T0, d|E(αδρ)) =
∑
j∈Nk

|g(t∗j )−m(t∗j , d|E(αδρ))|2.

The results of sum square error are shown in Tables I, II
and III for three learning approaches.

The algorithm for finding the value of a function by using
the regularization estimator and the midpoint estimator has
shown below.

The Algorithm

Step0 : Given ρ > 0.

Step1 : Calculate c(ρ) by the formula:
c(ρ) = (G+ ρI)−1d.

Step2 : Let fρ(t) =
∑
j∈Nn

c(ρ)jK(t, tj)

and find fρ(t
∗
j ) =

∑
j∈Nn

c(ρ)jK(t∗j , tj)

for all t∗j ∈ T0.

Step3 : Calculate ε2ρ and δ2ρ by the formula:

ε2ρ =
∑
j∈Nn

(1− λj

ρ+ λj
)2γ2

j .

δ2ρ =
∑
j∈Nn

λjγ
2
j

(ρ+ λj)2
.

Step4 : Set ε = ερ and δ = αδρ where α ∈ A.
Find m+(t

∗
j ,±d|E(αδρ)), we use the

program fminunc in the optimization
toolbox of MATLAB 7.3.0.

m+(t
∗
j ,±d|E(αδρ)) = min

c∈Rn
αδ||Kt∗j

−QT c||+ ε|c|2 ± (c, d).

Step5 : Calculate m(t∗j , d|E(αδρ)) by the formula

m(t∗j , d|E(αδ)) =
1

2

(
m+(t

∗
j , d | E(αδ))−

m+(t
∗
j ,−d | E(αδ)

)
Step6 : Calculate Eρ(T0) =

∑
j∈Nk

|g(t∗j )− fρ(t
∗
j )|2

and Em(T0) = max
α∈A

em(T0, d|E(αδρ)).

A. Experiment 1

For the first experiment, we use the gaussian kernel on R.
Specifically, we choose the exact function g as following

g(t) = K0(t) + 15K2.7(t)−K4.7(t). (16)

where

K(t, s) = Ks(t) = exp(− (t− s)2

50
) t, s ∈ R. (17)

Graph of the exact function as Eq. (16) is shown in Fig.III-A
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Fig. 1. Graph of the exact function for Gaussian kernel on R.

The set T consists of twenty equally spaced points
given by the formulae t1 = −5.0, tj+1 = tj + 0.5 and
t11 = 0.5, tj+11 = t10+j + 0.5, for all j ∈ N9. We
then generate the data vector d = (dj : j ∈ N20) by
setting dj = g(tj) + ej , j ∈ N20, where the error vector
e is generated randomly from a uniform distribution and
given by the formulae e1+j = (−1)j0.00207, e2+j =
(−1)j0.00607, e3+j = (−1)j0.0063, e4+j =
(−1)j0.0037, e5+j = (−1)j0.00575, j = 0, 5, 10, 15.

Next, we choose the set T0 which consists of twenty five
equally spaced points given by the formula t∗1 = −5.3, t∗j+1 =
t∗j + 0.44 for all j ∈ N24. We shall estimate the value of the
function f(t∗j ) when f ∈ H2(d|E(δ)) and for any t∗j ∈ T0.

TABLE I
THE SUM SQUARE ERROR OBTAINED FROM GAUSSIAN KERNEL ON R FOR

BOTH METHODS FOR DIFFERENT VALUES OF THE REGULARIZATION
PARAMETER ρ.

ρ
Sum Square Error

Eρ(T0) Em(T0, d|E(δ))

10−5 0.0310 0.0278

10−4 0.0585 0.4343

10−3 0.1577 0.0397

10−2 0.6382 0.0579

10−1 5.4352 0.2309

1 146.4015 8.0028

5 1.0456e+003 735.4432

10 1.7518e+003 1.5720e+003

Our computation in Tables I, II and III show each of these
quantities as the values of ρ in the first column and the sum
square errors of regularization estimator in the second column
and those of the midpoint estimator in the third column. Table
I presents the sum square errors between the exact function
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and the function learned from the regularization estimator
and the midpoint estimator.

Our computation indicates that the midpoint estimator for
almost all the range of the regularization parameter is better
than the regularization estimator although we pick up Em,
which is the largest sum square error of the midpoint estimator
with the value of δ = αδρ for all α ∈ A = {1.5, 3, 6, 12, 24}.

B. Experiment 2

In our second experiment, we choose the exact function

g(t) = K0(t)−
1

2
K 1

2
(t)−K− 1

3
(t) (18)

where

K(t, s) = Ks(t) =
1

1− ts
t, s ∈ (−1, 1) (19)

is the rational kernel on (−1, 1).

Graph of the exact function as Eq. (16) is shown in
Fig.III-B.
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Fig. 2. Graph of the exact function for Rational kernel on R.

The set up is similar to that in Experiment 1. Data
dj are set as dj = g(tj) + ej , j ∈ N20 with ej are
similar to that in Experiment 1. Points tj are the point
of exact values in T = {tj : j ∈ N20}. The set
of T consists of twenty equally spaced points given
by the formulae t1 = −0.99, tj+1 = tj + 0.99 and
t11 = 0.01, tj+11 = t10+j + 0.1, for all j ∈ N9. In
this experiment, we choose the set of T0 which consists
of fourteen equally spaced points given by the formula
t∗1 = −0.97, t∗j+1 = t∗j + 0.15 for all j ∈ N13.

From Table II, comparing the results of the sum square error,
we see that the midpoint estimator seems to perform better for
almost all the range of the regularization parameter.

TABLE II
THE SUM SQUARE ERROR OBTAINED FROM RATIONAL KERNEL ON R FOR

BOTH METHODS FOR DIFFERENT VALUES OF THE REGULARIZATION
PARAMETER ρ.

ρ
Sum Square Error

Eρ(T0) Em(T0, d|E(δ))

10−5 0.0192 0.0112

10−4 0.0030 0.0050

10−3 0.0087 0.0076

10−2 3.8727e-004 0.0055

10−1 2.6605e-004 2.4927e-004

1 0.0117 0.0082

5 0.1466 0.0030

10 0.4198 0.1306

C. Experiment 3

For the third computational experiment, we choose the
gaussian kernel on R2 and choose the exact function

g(t) = 1
2K(1,1)(t) +

1
6K(1,−1)(t)

+1
6K(−1,−1)(t) +

1
3K(−1,1)(t)

(20)

where
K(t, s) = Ks(t) = e|t−s|22 , t, s ∈ R2. (21)

Graph of the exact function as Eq. (16) is shown in Fig.III-C
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Fig. 3. Graph of the exact function for Rational kernel on R2.

The set up is similar to Experiments 1 and 2. Data dj are
set as dj = g(tj)+ej , j ∈ N20 with ej . Points tj are the point
of exact values in T = {tj : j ∈ N20}. The set of T consists
of twenty data points given by the formula

tj =
(
xj ,

(−1)j
√
36− 4x2

j

3

)
(22)

where x1 = −2.8, x1+j = xj + 0.3, x11 = 0.1, x11+j =
x10+j + 0.3 and j ∈ N9.

In this experiment, we choose the value of T0 = {t∗j : j ∈
N14} which consists of ten data points given by the formula in
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Eq. (22)where x∗
1 = −3.0, x∗

1+j = x∗
j +0.6, x∗

6 = 0.5, x∗
6+j =

x∗
5+j + 0.6 and j ∈ N4.

TABLE III
THE SUM SQUARE ERROR OBTAINED FROM GAUSSIAN KERNEL ON R2 FOR

BOTH METHODS FOR DIFFERENT VALUES OF THE REGULARIZATION
PARAMETER ρ.

ρ
Sum Square Error

Eρ(T0) Em(T0, d|E(δ))

10−5 2.4986e-004 2.4989e-004

10−4 2.4964e-004 2.4989e-004

10−3 2.4752e-004 2.4987e-004

10−2 2.3487e-004 2.4783e-004

10−1 4.4568e-004 2.4904e-004

1 0.0110 0.0019

5 0.0503 0.0437

10 0.0705 0.0676

Table III depicts the sum square error evaluated on ten
data points for the regularization estimator and the midpoint
estimator. Our computation again indicates that the midpoint
algorithm provides, at least in this numerical experiment, better
result than the regularization method.

IV. CONCLUSION

In this paper, we have provided some basic facts about the
Hypercircle inequality for data error We provided it in the case
that the unit ball B is replaced by δB where δ is any positive
number. Moreover, we also discussed some important facts of
Hide for practical computation. In Section III, we discussed
some results of our numerical experiments of learning the
value of a function in RKHS. All our computation indicated
that the midpoint algorithm on the learning tasks provided,
at least in our computational numerical experiments, better
results than the regularization approach.
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