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Abstract—This paper presents the results of a research that aims 

to develop an algorithm to solve robot path planning (RPP) problems 
in static environments. The problem is to find a global optimal path 
that satisfies the optimization criteria of shortest path with minimum 
computation time. A description of a variation of Ant Colony System 
(ACS) algorithm utilized for Robot Path Planning (RPP) purposes is 
presented. A representation of heuristic and visibility equation of 
state transition rules is proposed to sustain the function of Ant 
Colony System (ACS) for solving RPP problem of finding the 
optimal path. This algorithm was applied within a global static map 
that consists of feasible free space nodes.  

The performance of the algorithm in terms of computation time 
and number of iteration required to obtain an optimal path were 
evaluated by using a simulation approach. Subsequently, its 
performance was compared to the performance of Genetic Algorithm 
(GA) a well known and established RPP algorithm. The results 
obtained indicate that the developed algorithm performed much 
better than the GA. In addition, an overview of robot path planning 
(PP) algorithms in global static environment is also offered. 
 

Keywords—Path Planning, Ant Colony System, Algorithm, 
Global Environment, Autonomous Robot.  

I. INTRODUCTION 
HE ability to avoid obstacles is an important design 
requirement for any mobile robots. Thus, the 

determination of a collision free path between start and goal 
positions through obstacles cluttered in a workspace is central 
to the design of an autonomous robot path planning [1, 2]. 
Path planning can be defined as “the determination of a path 
that a robot must take in order to pass over each point in an 
environment and path is a plan of geometric locus of the 
points in a given space where the robot has to pass through” 
[3-6]. Path planning research covers a wide area of robotics 
research because it enhances robotic navigation systems in 
both static and dynamic environments. With the perfect path 
planning system, mobile robots can navigate by itself without 
human intervention to reach the targeted destination. 

 Robot navigation problems as shown in Figure 1 can be 
generalized into four categories which are 1) localization, 2) 
path planning and 3) motion control and 4) cognitive 
mapping.  Among these problems, it can be argued that path 
planning is the most important issue in the navigation process. 
Path planning enables the selection and identification of a 

suitable path for the robot to traverse in the workspace area.  
The two main components for global or deliberative path 
planning are 1) robot representation of the world in 
configuration space (C-space) and 2) the algorithm 
implementation. These two components are interrelated and 
greatly influence one another in the process to determine an 
optimal path for the robot to traverse in the workspace within 
an optimal time [2]. 

 
 
 

 

 
 

Fig. 1 Robot navigation problems. 
 
If the knowledge of the environment is known, the global 

path can be planned offline before the robot start to moves. 
This global path can aid the robot to traverse within the real 
environment because the feasible optimal path has been 
constructed within the environment. However, another 
category of path planning system known as local path 
planning was introduced to solve RPP problem when the robot 
is faced with obstacles. Local path is usually constructed 
online when the robot avoids the obstacles in a real time 
environment [1, 3]. Figure 2 shows the different between the 
two mobile robot navigation approaches.  
Currently many autonomous robotic systems have integrated 
path planning algorithms in one system. The combination of 
the main two approaches and multiple path planning 
algorithms in one system is called hybrid path planning 
method. Hachour  [7] for example, used multiple path 
planning algorithms in one system. In the development of his 
Hybrid Intelligent Systems (HIS) for Intelligent Autonomous 
Vehicles IAV in unknown environment, he successfully 
combined Genetic Algorithms (GA), Fuzzy Logic (FL), 
Neural Networks (NN) and Expert Systems (ES). 

T
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Fig.2 Mobile robot path planning approaches. 
 
Due to the significant of the RPP system, many researchers 

have focus on the RPP problem in both static and dynamic 
environments. This research is focused on RPP problem in 
global static map with the goal to find the optimal path and 
also satisfy the optimization criteria. The algorithm proposed 
in this research is develop based on the analogy of behavior of 
ants while finding its food known as the variation of Ant 
Colony System (ACS) created for RPP purposes. 

ACS is within the swarm technology category. Swarm 
technology or systems mimic’s natural systems where many 
individuals coordinate and work together to achieve a target 
by using decentralized and self-distributed organization 
approach. Swarm technology is thus based on social habits 
and work ethics of insects such as ants, bees and certain types 
of fish and birds. These creatures’ works as a team to achieve 
their target. Based on the behavior and ability of colonies of 
ants that are  able to find the shortest route between their nest 
and a food source, Marco Dorigo [8] developed an 
optimization algorithm known as ACS or Ant Colony 
Optimization (ACO) algorithm in early 1990’s. The algorithm 
proposed herewith is a variation of the ACO algorithm. 

II. PATH PLANNING ALGORITHMS 
The evolution of robot global path planning algorithms 

from 1980 until today shows that there are numerous type of 
path planning algorithms proposed by researchers to solve 
RPP problem [2, 9]. The numerous research in this area lead 
to an improvement of the global path planning approaches 
from one generation to the next generation. It started with 
finding the path to goal successfully. Then the global RPP 
system is enhanced by finding the path successfully and must, 
at the same time satisfy a certain optimization criteria where 
for example, the computation time and path cost of the 
algorithms while finding its path must be considered. 
 

A. Global Path Planning  
In global PP, both the complete description of goal and 

static space of the obstacles are made available. The objective 
is to find a collision free path for the robot to move from 
initial position to goal position. By using the created global 
path, before it moves, the robot will have a reference and 
guidance to which way it can traverse the course to goal point 
or position.  

 Figure 3 depicts a framework to represent Global PP. As 
shown, a model of the map of robot workspace area including 
the location of robot, obstacles and free space area known as 
configuration space (C-space), must first be created. In C-
space, all possible configurations of robot are represented. 
Then, the C-space will be modeled by discretizing the free 
space area to construct a graph that represents the connectivity 
of the space. This graph is constructed by using an appropriate 
algorithm that presents the connectivity of the graph which 
also known as graph search techniques. Finally, the PP 
algorithm is applied within this graph to find a feasible path 
for the robot to reach the goal. 

 

 
 

Fig. 3 Framework of graph search techniques for robot global PP 

B. Evolution of Global Path Planning  
 
Path Planning Algorithms (PPAs) have progressed and its 

evolution shows many improvements from one generation to 
the next generation. The more recent generation of PPAs have 
been created to be more adaptive and able to work within the 
robot environment itself [10]. 

The development and evolution of traditional path planning 
approaches such as Artificial Potential Field [11], Neural 
Network [12], Distance Wave Transform [13], A* algorithm 
[14], D* algorithm [9] and etc,  proposed by previous 
researchers have changed and evolved to other variation of 
path planning approaches that is based on approaches 
categorized as artificial intelligence [15]. 

     These approaches are also known as evolutionary 
computation. An example, is the Genetic Algorithm (GA) 
[16], which is an algorithm created from the analogy of 
behavior of ants such as Ant Colony Optimization algorithm 
[8] and algorithm from behavior of swarm intelligences such 
as Particle Swarm Optimization algorithm [8, 17]. These 
algorithms are not only capable to find optimal paths that 
satisfies the optimization criteria but is also adaptable and 
robust in both static environments and also in dynamic 
environments [18-21]. Compared to traditional approaches, 
these methods have been proven as a robust and effective 
search technique that can be used to optimize the RPP 
problem [18]. 

   Since its appearance in approximately 1992 [8], ACO has 
been used in solving many optimization problems such as the 
Traveling Salesman Person (TSP) problem [22]. ACO is a 
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search technique inspired by the foraging behavior of real 
ants. With ACO ability to solve a hard combinatorial 
optimizations problem, the use of ACO has contributed to the 
success of many RPP research. For example, Tan Guan Zheng 
[23] proposed the use of ACS to find robot path based on map 
of MAKLINK graph. Results of their study show that ACS 
performances are better than evolutionary approaches. Hao 
Mei et al [24] then combined ACO with Artificial Potential 
Field to produce the path planning in dynamic environment. 
Gengqian et al [19] have verified that ACO can find an 
optimal path in their grid map by proposing its own state 
transition rules equation. A literature study shows that the 
application of ACO to solve the RPP problems has not been 
explored in detail. 

     The research presented herewith has been carried out to 
examine the performances of ACS in a given global map. The 
ACS is proposed with a combination of a new state transition 
rules to solve the RPP efficiently with support from the actual 
local and global updating rules of ACS. The performances of 
the algorithm in terms of computational efficiency was 
observed and evaluated based on the distance, time and 
number of iteration the algorithm takes to find an optimal path 
compared to GA. The goal is to enhance knowledge of Ant 
Colony Optimization algorithms in RPP research area. In this 
paper, the mapping and path planning algorithms construction 
including the pseudo code is first discussed. Then, the results 
and discussions are provided. Finally, a conclusion that 
compares and summarizes the performances of ACO is 
presented. 

III. RESEARCH METHODOLOGY 
In the initial stage, the environment was mapped using an 

appropriate mapping algorithm that represents the global 
workspace area where the robot works. This map will 
represent the start point, goal point, and differentiate the area 
which consists of obstacles and free space before the path 
planning algorithm can be applied. In this research, the map 
complete with connection of free space nodes was constructed 
by assuming that the obstacles have been ignored at the early 
stage of the path planning process. The nodes are located at x-
y coordinates and this was the input nodes the algorithm will 
work with. With this available map, the path planning process 
has been simplified where it only need to optimize the feasible 
free space path to goal. 

     In order to plan the path, the ACS will use these nodes 
as an input for it to find path to goal efficiently. 
Representation of nodes with integer numbers will be used 
during the initialization process while the real location of x-y 
coordinate will be used to evaluate exactly the path cost or 
distance between one node to another node. Finally, the 
optimal path and the performances evaluation will be recorded 
to verify the effectiveness of the proposed algorithm itself. 
Fig. 4 illustrates the proposed method applied within this 
experimental research study.   

 

 
Fig. 4 Proposed Method 

 

A. Environment Modeling 
For this research, a 2D global map was created with nodes 

that are of a 10 X 10 cm size. A map that consists of 26 free 
space nodes connected to one another has been proposed. This 
map was created by assuming that obstacles have been 
ignored at the early stage of map construction as shown in Fig. 
5. As a result, the map will only consists of feasible free space 
nodes as illustrated in Fig. 6. Similar maps have been 
proposed by previous researchers such as the Visibility graph 
[13], random graph [21] and MAKLINK graph [23]. 

 

 
 

Fig. 5 Example of global feasible map 
 

 
 

Fig. 6 Global free space map used by ACS 
 
During the construction of this map, the location of free 

space nodes (yellow cell) was determined randomly without 
applying any specific mapping algorithm. The location of free 
space feasible map was determined randomly by referring to 
the knowledge provided on the map itself. The area where the 
robot can safely traverse including it size is represented by a 
white cell while the boundary area of obstacles includes the 
safety region is represented by black cells as shown in Figure 
3. At last, using the final model of the map depicted in Fig. 4, 
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the algorithm will start to find a solution by initializing the 
population of feasible path (blue line) or unfeasible path (red 
line) to goal as shown in Figure 7, during the construction 
process of finding an optimal path. Figure 8 and Figure 9 are 
examples that show the population of a path. 

 
 

 
 

Fig. 7 Feasible and unfeasible path  
 
 

 
 

Fig. 8 A sample of feasible path population 
 

                

 
 

Fig. 9 A sample of unfeasible path population 

IV. ANT COLONY SYSTEM ALGORITHM  
For this RPP purpose, the proposed path planning algorithm 

is a modification of the original ACO concept (also known as 
Ant Colony System) proposed by Marco Dorigo [11]. Figure 
10 outlines the implementation of ACO for RPP of a mobile 
robot. The model and concept of the proposed algorithm is as 
follows: 

 
 
 

 
Fig. 10 Outline of ACO for RPP of a mobile robot 

 
Step 1: Starting from the start node located at x-y 

coordinate of (1,1), the ant will start to move from one node to 
other feasible adjacent nodes provided during the map 
construction as shown in Fig. 11. As depicted, there are three 
possible movements available for the ants to move from the 
start node (1,1). The possible nodes are: node 1 located at the 
x-y coordinate of (1,3), node 2 at (2,3) and node 3 at (3,2). 

 
Step 2: The ant will then take the next step to move 

randomly based on the probability given by equation (1) 
below: 

 

 
Fig. 11 Ant current position (red nodes) with 3 possible 

next positions (green nodes) 
 
Probabilityij (t) = Heuristic ij (t)*Pheromone ij (t) 

=[(1/distance between vector start point to next point and 
start point to reference line to goal)β* (trail/Σ trail)σ]  
                                                                                  (1)                        
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     where Heuristicij (t) indicates every possible adjacent 
nodes to be traversed by the ant in its grid position at every t 
time. The quantity of Pheromone ij (t) is an accumulated 
pheromone the between nodes when the ant traverse at every t 
time. Therefore, the probability equation depends on both 
values where it will guide the ants to choose every possible 
node in every t time. 

A. Derivation of heuristic@ visibility equation 
The heuristic equation was derived from the idea of the 

local and global search solution for the RPP purposes. This 
represents the distance between selected adjacent nodes with 
intersect point at references line where the intersect point must 
be perpendicular 900 to the next node (Distance A) as shown 
in Fig.12. Due to the objectives of this research, the distance 
between each node that have the shortest distance should have 
a higher probability to be chosen compared to the longer 
distance. To ensure that this is achieved, the derivation of 
heuristic proposed must be inversed with the distance found as 
shown in equation (2) below: 

 
Heuristic=[1/distance between next point with intersect 

point at reference line]β                                                  (2) 
*where β=heuristic coefficient 
 
Fig. 12 depicts the proposed solution of using the 

Pythagoras Theorem to calculate the distance A. For this 
purpose, the outline of the triangle has been developed to 
simplify the derivation. Using Pythagoras Theorem, Sin θ is 
equal to Distance A/Distance B where Distance A is equal to 
Sin θ* Distance B. θ here refers to the angle of vector of 
intersect point to next visited node with line of intersect point 
to goal position while Distance B refers to the distance from 
intersect point at references line to the next visited node. 
Intersect point is the point obtained when the line of the next 
node which is parallel with the x-axis intersects with the 
references line. Thus, the equation for distance A is equal to: 

 
Distance A=Sin θ*Distance B=Sin θ* sqrt [(y2-y1) 2+(x2-

x1) 2]                                                                           (3) 
 

 
Fig. 12 Derivation of Distance A 

 
As depicted in Fig. 12, the heuristic calculation can be 

calculated as shown below: 

 
Distance A= Sin θ* sqrt [(y2-y1) 2+(x2-x1) 2] 
= Sin 450* sqrt[(2-2) 2+(3-2) 2] 
= 0.7071*1= 0.7071 
 
Visibility=[1/0.7071]1=1.4142 

B. Derivation of trail equation 
The amount of pheromone or trail will also determine the 

probability of the next node to be chosen. The artificial ants 
behave similar with the real ants where the pheromone will 
attract the next ants to follow the shortest path until the 
process converges when all ants follow the same path to 
target. Equation (4) is the trail equation used in this research. 

 
Trail= [trail//Σ trail] α ,where α=trail coefficient (4) 
 
     The concept of the amount of pheromone used is similar 

with the original ACS concept where the higher the amount of 
pheromone, the higher the probability value which will attract 
more ants to follow the short path and simultaneously cause 
the ACS to converge faster. Thus, if the amount of pheromone 
is smaller, the probability will become lower thus the path cost 
will be higher as the ants will avoid traversing a path with a 
lower pheromone amount. 

 
Step 3: Each time ants construct a path from one node to 

another, the pheromone amount will be reduced locally by the 
given evaporation rate using the formula of update local rules 
as shown below: 

 
Τij (new trail) ←(1-ρ)* τij (old trail),                     (5) 
* where ρ=evaporation rate 
 
     This equation shows that each time the ants move from 

one node to another node, the amount of local pheromone will 
be updated in parallel. This process is important to prevent the 
map from getting unlimited accumulation of pheromone and 
enables the algorithm to forget a bad decision that has been 
previously made. 

 
Step 4: Once the ants found its path to goal, the fitness of 

ants will be calculated. This covers the calculation of distance 
or path cost each ant takes to traverse from start point to goal 
point by using derivation of objective function for RPP below:  

 
Distance= sqrt [(y2-y1) 2+(x2-x1) 2]                        (6)  
 
Step 5: The fitness value will then be used for the process 

of global update. When all ants reach the destination, the ants 
will update the value of pheromone globally based on the 
fitness found by each ant by using Equation (7) below. This 
process will be repeated as the path being traverse by ants in 
each generation is determined using this global value. 
Generally, this process will attract the ants to follow the 
optimal path. During the process, the path with the shorter 
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distance will be chosen as the probability to be chosen is 
higher compared to the path with the longer distance. The 
equation of global updating is derived in (7) and (8) below: 

 
tij ← tij + Σ Δ tijk                                                             (7) 
 
where Δ tijk  is the amount of pheromone of ant m deposits 

on the path it has visited. It’s defined as below: 
    (8) 
where Q is number of nodes and Ck is the length of the path 

Pk built by the ants. 
 
Step 6: The process will be repeated from Step 1 to Step 5 

until the process converges. The process will stop when all 
ants traverse the same path that shows the shortest path to goal 
has been found. The detailed flow of the algorithm structure is 
simplified as shown in pseudo code below. 

 

C. Pseudo Code of ACS Algorithm for RPP 
 
If iteration (tmax )=1,2,3,4,5,6,…………………+n 
    Else if ant(m)=1,2,3,4,5,6,…………………….+n 
      Else if nodes(n)=1,2,3,4,………………….+n 
     Compute the probability of the m th ants next nodes 
    Move to the next nodes by computed probability 
   Store history of past location of nodes in an array 
      If current location of nodes is equal to destination 
      Break the nodes (n) loop 
     End 
End 
Evaluate fitness and store path distance of m th ants 
Compute pheromone amount generated by m th ants 
End 
Update pheromone amount of the entire map 
End 
 

D. Implementation   
The pseudo code was then translated and coded into 

MATLAB source code via a function available within 
MATLAB 7.0.4. The simulation was carried out using a 
computer with Intel (R) Celeron (R) M processor 1.5 GHz 
with 504MB of RAM. Various simulation results were then 
recorded based on the evaluation criteria required for this 
experiment outcomes such as optimal path, path cost, time, 
number of iterations, and etc. 

V. RESULTS AND DISCUSSIONS 

A. ACS Performance for RPP  
The result of implementing the ACS on an environment that 

consists of simple number of obstacles (shown in Fig.4) is 
tabulated in Table 2 below. The indications from the test 
results are that the ACO can find the optimal path successfully 
using selected parameter settings as shown in Table 1 below. 

The optimal path found by the ACS in 10 test runs is the same 
path with linkage of nodes 1.2.6.14.15.26 and the path cost is 
approximately 13.6476 cm as shown in Fig. 13 below. The 
average computation time is equal to 15.4062 sec while the 
average number of iterations is equal to 3.5 times. 

     The way ACS work is based on the behavior of ants 
where the heuristic and amount of pheromone plays an 
important role to guide the ants to reach the destination 
successfully. With the proposed state transition rules derived 
from the idea of creating the references line from start to goal 
point, ACS have been proven able to efficiently find an 
optimal global path. Similar to the original ACS concept, the 
path which has the higher amount of pheromone will attract 
more ants to traverse within that path while the path which has 
the low amount of pheromone will influences the behavior of 
ants to work avoiding the obstacles. Typically the short 
distance will cause the accumulated amount of pheromone to 
become higher compared to a longer distance path. The results 
in Table 2, indicates that the proposed ACS algorithm seems 
to be able to find an optimal global path. 

 
Table 1: ACO Parameter Specifications 

 
 
Table 2: Computation Times and Iterations of ACO 

 
 

C. Comparative Study of ACO and GA performance for RPP 
Based on the results tabulated in Table 3, the optimal path 

found by both algorithms is the same as path found in Fig. 13 
but the computation time and number of iteration is 
difference. ACO found the same path faster with a small 
number of generations in 5 test runs. The average time is 63 
seconds and required only an average of 4.4 numbers of 
iterations. In the case of Genetic Algorithm (GA), the test run 
times have an average of 157.18 seconds with an average 8 
number of iterations. This indicates that the proposed ACO is 
more robust and more effective. This is due to the guidance of 
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the state transition rules that makes the ants work more 
intelligence compared to GA that is based on evolutionary 
approaches. 

 

 
 
Fig.13 Optimal path found by ACS at the 3rd generation 

 
Table 3: Computation Times for GA & ACO 

 
 
     For the proposed ACS, the ants will determine the next 

chosen node accurately with the guidance of state transition 
rules where it can help the ants to traverse the nodes near the 
optimal nodes and ignore unfeasible nodes. In contrast, with 
GA, the next node to be chosen is based on random 
approaches that will simultaneously cause GA to go through 
the selection and remove process iterately while finding the 
optimal path. Thus as shown, ACO can find the optimal path 
faster within a smaller number of generations compared to 
GA. Figure 14 depicts the time each algorithm took to find the 
optimal path for each run and Figure 15 shows the number of 
iterations required to obtain the optimal path. 

 

 
 

Fig.14 Time (seconds) required for algorithm to find optimal path.  

 
Fig.15 Number of iterations required to find optimal path.  
 

VI. CONCLUSION  
 
The proposed variation of ACS for RPP cases within a given 
map of feasible nodes was proven able to find the optimal 
path effectively. The optimal path found satisfied the 
optimization criteria for RPP purposes which are to reduce the 
path cost and shorter computation time with smaller number 
of generations. The comparative study between Genetic 
Algorithm and ACO also proved that ACO is more robust and 
effective in finding optimal path compared to GA. The 
research indicates that, the applications of ACS can be further 
explored to expand the applications of both optimization 
algorithms in RPP research area. 
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