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 
Abstract—This paper introduces a problem related to decision-

making and the shaping of political strategies in the course of one 
term of office. First it is assumed than one of the parties, say the one 
in the government, does not modify its position and then the other 
one, say the opposition, searches for the best proposal within a 
circular neighborhood of flexibility. Next it is assumed that the 
government and the opposition shape their proposals for action on 
two issues that are relevant for the citizens and a variable component 
is considered regarding both the relevance of the issues to be dealt 
with and the strategies that the parties are presumed to adopt. This 
component is reflected in the consideration of elliptic neighborhoods 
of flexibility for both parties. In addition, it is considered that the 
process is dynamic because the proposals are intended to be modified 
taking into account the other party’s foreseen action in order to get 
the maximum number of votes. The contribution of this article lies in 
this approach, as well as in its taking into account variable 
components. The problem is dealt with from a geometric point of 
view, and a search algorithm to find optimum strategies is developed. 
 

Keywords— Computational geometry, Operations research, 
Search algorithms.  

I. INTRODUCTION 

odels of point location have been studied in various 
fields such as industrial organization, image processing, 
movement of robots, location of tourist elements and 

location-aided routing protocol [6], [25], [26]. Optimum 
strategy models have also been proposed for locating parties 
in political economy research [14], [15]. Most of these models 
consider the population as a continuum [3]. Novel elements of 
this research include working with a discrete population, 
applying techniques and results from computational geometry 
as adapted to the problem, and considering weighted distances 

and neighborhoods as well as uncertainty parameters (as an 
example of how to introduce uncertainty parameters by means 
of techniques of the fuzzy logic, see [13], [21]) 
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This research tries to solve a particular kind of political 
economy problem [18], [20] using geometric tools. The points 
of a plane, called here the policy plane, represent various 
political options with respect to two important topics. It is 
assumed that the distances between points can be used to 
represent the affinity of the citizens to the policies represented 
by the points [16], [17], [13], [1], [2]. In a first setting it is 
considered the Euclidean distance as the work distance. In a 
second approximation it is considered that the relevance of the 
topics to be dealt with need not be the same and may not even 
be perfectly determined, so it is proposed to attach a 
weighting parameter to each topic. This parameter is 
introduced by means of weighted Euclidean distance. 

The aim of this study is to find optimum strategies to be 
followed by the two majority parties of a country (government 
and opposition), while still allowing them to fine-tune their 
proposals to a certain extent. In addition, the process is 
sequential, because the proposals are intended to be modified 
taking into account the other party’s foreseen action. The 
contribution of this research lies in these approaches, as well 
as in the consideration of subjective components. 

The article is structured as follows: the model representing 
the two cases aforementioned and the search strategies to find 
optimum positions are developed in Sections II and III. An 
example of the second case is developed in Section IV. 

 

II. FIRST CASE: USUAL EUCLIDEAN DISTANCE 

A. The model 
At a first stage to establish the model it is necessary to 

define the political space. Because politics is highly complex, 
it is necessary to simplify the model by restricting the analysis 
to a small number of representative issues. It is known that 
societies develop low-dimensional mental models of political 
decisions, so this restriction is appropriate for this study. In 
spite of this, the one-dimensional models of the space where 
the preferences of voters are distributed, are excessively 
simplistic, since representing all the political areas of a party 
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by a single parameter does not illustrate the reality. Indeed, it 
is possible to extrapolate voters’ positions on certain issues 
from their positions on other issues, and therefore a policy 
space of two or three dimensions should suffice [4]. 

Concretely, this research focuses on two topics which are 
relevant to the citizenry. A policy plane is defined by these 
two currently relevant issues, with the two political parties 
represented by points t1 and t2 and the location of the n voters 
represented by points v1,…,vn [20]. By considering the 
appropriate perpendicular bisector at the defined distance, it is 
possible to calculate the number of voters that will choose 
each party by determining their proximity or affinity to its 
policy. It is accepted that each party can change its policy 
within a certain neighborhood with the objective of obtaining 
the greatest possible number of voters. First it is considered 
the case in which one of the parties does not change its 
position and the other one moves. Next, the case of movement 
for the two parties is studied. In both cases, the objective is to 
find the optimum location for one party in this neighborhood, 
that is to say, the location that ensures the greatest number of 
supporters. In the second case, by assuming that this party will 
choose one of these positions, it is intended to determine the 
other party’s reply, that is, the optimum strategy to prepare for 
the other party’s possible proposal. This second case will be 
developed in section III. 

The essence of this problem can be seen as a discrete 
version of the Voronoi game. In this game, two players locate 
several points in the plane in an effort to claim the greatest 
possible area [11], [9], [19], [7]. In the present problem, two 
points are located so as to earn the greatest possible number of 
points (voters) instead of the greatest area.  

The consideration of restrictions on the movement of the 
parties represents an alternative to the analysis presented by 
[4], in which a continuous model with more than two parties 
but without restriction of neighborhoods is considered, or that 
of [22], in which a simplified model on a discrete rather than a 
continuous real space is discussed.  

Let us now formalize the model by representing the 
political stance adopted by the government and the opposition 

on each of the two topics as points t1=  1
2

1
1 , tt  and t2=  2

2
2
1 , tt  

and letting vi =  ii vv 21 , , i=1,…, n, be the coordinates which 

represent the preferences on these topics for the n voters of a 
certain population. 

In the game presented here, the utility function of a policy tj 
for each voter vi is defined as: 

    2 ,, ijij vtdvt  , 

where  represents the Euclidean distance between 

political position  and voter v
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The payoff functions in the game are given by: 
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The set of voters siding with the first party will be the 
subset of voters that are closer to position t1 than to the 
position of the second party. To locate these voters, we use the 
bisector of the line between t1 and t2, which is given by:  

})()(
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 The flexibility neighborhoods must also be stated. They are 
defined as follows: 

Definition 1. Starting with the initial position of one of the 

parties  ii yx 00 , , i=1, 2, its flexibility neighborhood is defined 

as: 

Ni= . This is the disk 

centered on 

})()/(),{( 22
0

2
0

2 Ryyxxyx ii 

 ii yx 00 ,  with radius R 

B. Algorithm of resolution 
We look for the best situation for one of the parties within 

its neighbourhood, the one that approaches it to the greatest 
number of voters. 

Proposition 1: An optimum position t1 for the first party, 
given a position t2 for the second party, is found on the 
boundary of N1 in the arc of the disk located between the two 
points  of the tangent lines from t'',' pp 2 to the disk (the part 

of N1 which is visible from t2), as shown in Figure 1 

 

 

Fig. 1: The arc delimits an area with maximum votes for t1. 
 

We develop the algorithm that permits us to obtain the 
region from the visible part from t2 that procures the 
maximum number of voters for the first party. 
Algorithm: 

Let C denote the arc defined in proposition 1, which is the 
visible part from t2 of N1. 
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For all points  ii vv 21 , , compute Di, a disk centered at  ii vv 21 ,  

whose boundary contains t2. Compute the intersection of Di 
with C. Let Ci be such intersection. 
Compute the points on C that are contained in the largest 
number of arcs Ci. This can be done by sorting the begin and 
endpoints of the arcs Ci´s, and then scanning this sorted list. 
(Figure 2) 
 

 
Fig. 2:  Captation zone for p of the point v 

The complexity of the algorithm in the worst case is O(n 
log n). In fact, first part of the algorithm is linear in the 
number of points, because the operation for each point 
requires constant time. The complexity is dominated by the 
last step, which requires O(n log n) for the sorting of the 
extreme points of the arcs. The final scanning can be done in 
linear time thus obtaining not only the best solution, but the 
number of voters for this solution. For that it is only necessary 
to add a counter to the scanning process indicating the number 
of overlapping arcs. 

III. SECOND CASE: GENERALITION TO WEIGTHED EUCLIDEAN 

DISTANCE 

A. Modification of the model 
A generalization of the model presented in section II must 

now be defined to fit the reality in the following two ways: 
1) Politics is a dynamic process in which each party reacts 

to proposals presented by its adversary 
2) The relevance of the topics to be dealt with need not be 

the same and may not even be perfectly determined. 
Given the proposals made by a country’s majority parties 

on particular topics, the governing party searches for an 
optimum strategy that brings it closer to the maximum number 
of citizens within a neighborhood that represents its 
ideological flexibility. On the other hand, the opposition party 
is ready for this reaction by the government and prepares a 
different strategy in its flexibility neighborhood with a view to 
finding the best reply to any of the possible optimum stances 
taken by the government. Thus, the parties’ positions evolve 
within their flexibility neighborhoods. These kinds of 
sequential games have already been presented in the 
continuous case by [20]. In this paper a different approach to 
query 1) is showed in subsections C and D 

With respect to the second query, it is proposed to attach a 
weighting parameter to each topic. This parameter is 
introduced by means of weighted Euclidean distance: 
 
Definition 2. The weighted Euclidean distance between 

political position  and voter vjt i: 

  2
22

2
11 ))(1()( , jiji

ij tvtvvtd   . 

Parameter )1,0(  indicates the importance of each of the 

topics to be dealt with. 

The perpendicular bisector and flexibility neighborhoods 
will also be affected by the weighting assigned to each topic. 
They are defined as follows: 

Definition 3. The bisector of the line between the positions 
t1 and t2, is given by:  
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Definition 4. Starting with the initial position of each party 

 ii yx 00 , , i=1,2, its flexibility neighborhood is defined as: 

Ni= , where R}))(1()(/),{( 22
0

2
0

2
i

ii Ryyxxyx   i, 

i=1,2, represents the degree of flexibility of each party, that is, 
Ni is the inner region of the ellipse centered on the initial 

position taken by the party, whose semi-axes are 


Ri
 and 


iR

1
. 

It can be seen that the lower the relevance of one of the 
topics to be dealt with, say the first (  closer to zero), the 
greater the flexibility that is granted to the party to handle it. 
This behavior is logical because the parties must stay closer to 
their initial ideological stances when dealing with a highly 
relevant topic. 

Throughout the section, it is assumed that the 
neighborhoods of both parties have an empty intersection, that 
is, N1N2=. 

B. Classifying voters by region 
The flexibility neighborhood of each party ensures it a certain 
number of voters, no matter which location its adversary 
occupies within its neighborhood. Therefore, the points in the 
voter set can be classified into three regions:  

- Sure voters for the first party. 
- Sure voters for the second party. 
- Undecided voters who can be captured by the party 

that places itself in the appropriate area of each 
voter’s neighborhood. These voters are decisive, and 
the campaign and political proposals must be 
oriented towards them. 
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Certain regions can then be determined and interpreted as 
described following: 

a) Points that the first party always captures: 

Points  ii vv 21,  that belong to the set: 

             212121 ,  :,max ,Nx,y dNccwithcc,x,yd/x,y   .

The boundary of this set is: 
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

   

 The sure voters for the first party are those located in the 
region bounded by this curve where the party is located. 
b) Points that the second party always captures: 

Points  ii vv 21 ,  that belong to the set: 

             122121 ,  :,max ,Nx,y dNccwithcc,x,yd/x,y  . 

The boundary of the set is: 

21

22
0

22
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0
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yyxxyyxx



 

 The sure voters for the second party are those located in the 
region bounded by this curve where the party is located. 

The undecided voters are those located between the two 
curves determined above. 

The curves bounding the regions that classify the voters 
keep changing, and so do the regions captured, depending on 
the weights. 

Figure 3 illustrates these regions in the particular case in 
which both parties’ initial positions agree on one of the topics. 

In this example,   )0,0(, 1
0

1
0 yx ,   )0,2(, 2

0 y , 

R

2
0x

1=R2=1/2, and   varies from 0.2 to 0.9 in steps of 0.1. In 
these cases, one of the topics (here, the second topic) is not 
relevant because both parties initially agree on it. In this case, 
a greater weight and consequently a greater relevance for the 
first topic means that the region of sure voters for each party 
increases and contains the regions corresponding to lower 
weights. Thus, the number of undecided voters decreases 
depending on the importance of the topic being considered. 

 

 
 

Fig. 3: Regions for capturing the maximum number of voters when 
the parties agree on one of the policies they offer 

 

C. Search for an optimum position for the governing party 
The following proposition makes it possible to search for an 

optimum position for the first party: 
 

Proposition 2: An optimum position t1 for the first party, 
given a position t2 for the second party, is found on the 
boundary of N1 in the arc of the ellipse located between the 
two points  of the tangent lines from t'',' pp 2 to the ellipse 

(the part of N1 which is visible from t2), as shown in Figure 4. 

 
Fig. 4: The arc delimits an area with maximum votes for t1. 

 
Inside the arc defined in Proposition 2, let A be the region 

which captures the maximum number of votes for the first 
party. The procedure to be followed to determine A is based 
on calculating the area of maximum intersection between this 

arc and the sets  

with i=1,...,n, as shown in Figure 5. 
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Fig. 5 The marked arc represents the area on the border of N1 with 

maximum votes for the first party given points v1, v2. 
 

- Algorithm for the calculation of region A 
The algorithm for obtaining A results from a generalization 

of the algorithm presented in section II to the case of weighted 
Euclidean distances. The complexity of the algorithm in the 
worst case is therefore O(n log n) [6]. The procedure is 
detailed in Appendix A. 

D. Reply strategies for the opposition 
The opposition party realizes that, taking its initial position 

at a starting point, the government will choose a position, 
located in region A, which guarantees it the maximum number 
of supporters. Now the opposition must prepare an appropriate 
reply strategy. To this end, it is assumed that the opposition 
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party will follow the most conservative stance; that is, it must 
find the optimum location, the one that ensures it the 
maximum number of followers, whatever the position of the 
first party in this optimum region. Proposition 3 determines 
this optimum location under this assumption. 
 

Proposition 3: Within N2, let B be the region which 
captures the maximum number of votes for the second party, 
assuming that the first party is located in A. Region B is 
calculated as the maximum intersection in N2 of the 
neighborhoods centered on the voters with a radius equal to 
the minimum distance between these voters and A: 

})),(())(1()(/),{( 22
2

2
1

2 Avdvyvxyx i
ii   , with 

i=1,...,n. 
Remark: The distance from an external point to a 

neighborhood is attained in the intersection of the segment 
that joins the point with the center of the neighborhood and 
the border of this neighborhood. Thus, if the segment that 
joins vi with the center of N1 intersects A (part of the border of 
the neighborhood), the distance from vi to A is attained at this 
intersection point. Otherwise, it is attained at one of the 
extreme points of A. 
- Algorithm for the calculation of region B 

The following discussion develops the algorithm to 
determine the region B that provides the maximum number of 
voters for the second party for any locations of the first party 
in A. The algorithm is based on the following idea: 

For all poi ), 21
ii v , compute Dnts 

in

for calcula
 

asier to implement, so it is preferable 
practical purposes 

IV. SIMULATION OF AN EXAMPLE FROM THE NATIONAL 

tion of how to construct a political space is given in 
[1

ction III were implemented in 
th

II, the following 

 from the expense 

97-2004): 

(v i, an elliptical 

neighborhood centered at ),( 21
ii vv  and with a radius equal to 

the distance from ),( 21
ii vv  to A. Compute the maximum 

intersection of Di, i=1,...n, that intersects with N2. One way to 
determine this maximum intersection is the algorithm 
developed by the authors, for which the procedure is detailed 

 Appendix A.  
This algorithm consists of applying n times the algorithm 

ting region A. Given that the latter has complexity 
the complexity of the whole algorithm is 

)log ( 2 nnO . It can be seen that the procedure presented here 

has the same complexity as that developed by [5] for 
calculating the maximum intersection of a set of circles, thus 
representing an alternative to that algorithm in the case of 
ellipses. In any case, there exists an algorithm that calculates 
the region of maximum intersection of a circle arrangement 
slightly faster [10], [21]. In spite of this, the algorithm 
developed here is e

)log ( nnO ,

for 

POLITICS OF SPAIN  

The game developed here has been simulated using an 
example of political competition in Spain. Because the game 
is two-dimensional, it was necessary to define a two-
dimensional political space, and so two relevant issues had to 

be chosen on which the parties could adopt policies. In this 
respect, it was decided that education and health were two 
issues that nowadays concern the citizenry in Spain (a deeper 
explana

2]). 
To find the best positions for the parties in this simulation, 

the algorithms described in se
e C programming language.  
Following the ideas enunciated in Section I

inputs were provided for the implementation: 
• The political plane was determined using the 

percentages of expenses committed to education and 
health as derived from the Consolidated General 
Government Budget of Spain (1997–2006) [8]. These 
quantities were extracted
statements (chapters 1 to 8). 

• The initial policies chosen by the first party (PSOE: 
Partido Socialista Obrero Español) and the second 
party (PP: Partido Popular) were determined using 
the mean percentages of expenditures dedicated to 
these two policies, as calculated from the total mean 
expenditure during two years of PSOE party 
government (2005, 2006) and eight years of PP party 

government (19  1
0

1
0 , yx =(0.6,1.4), 

 2
0

2
0 , yx =(1.6,8.9). 

• The radius of the neighborhoods of political 
rties: R1, R2. flexibility for the pa

• The parameter  . 
• The 2276 voters and their positions vi, i=1,...,2276. 

The location of the voters on the political plane was 
simulated according to the ideological spectrum of 

e victory to the PSOE 
(1

ing the algorithm to these inputs, the outputs 

oters obtained by the PSOE party by 
A. 

oters obtained by the PP party by 

r

Spain. 
For the initial policies used in this example, it was found 

that the voting intentions would give th
277 voters) over the PP (999 voters). 
After apply

obtained are: 
• Region A.  
• Numbers of v

locating in 
• Region B. 
• Numbers of v

locating in B. 
Twelve simulation cases we e developed by considering 

three values for the parameter  : )
3

2
,

2

1
,

3

1
(  and four pairs of 

degrees of flexibility: (R1=3, R2=1), (R1=1, R2=3), (R1=1, 
R2=1), (R1=2, R2=2). It should be noted that the greater the 
value of  , the more important is the first issue. Moreover, if 
the flexibility of a party increases, then it can capture more 
voters.  

The optimum regions A, B and the percentages of votes 
obtained for each party in each case are presented in Table 1 
(in Appendix B) and Figures 4–8. The results obtained using 
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this example show that varying the degree of flexibility of 
party policies and the parameter that weights the relevance of 
the issues significantly affects the maximum number of voters 
th

ore relevant (that is to say, if the 
value of 

at each party can capture.  

Figure 6 shows that despite the greater degree of flexibility 
for the government party, the increment of voters captured 
when this party chooses a position is less than the increment 
obtained by the opposition party when it chooses a response if 
the first issue becomes m

  is increased). 

 

Fig. 6 Percentage increments in vote capture for R1=3, R2=1: the 
first column represents the percentage increments in vote capture 

when the government party chooses a position, and the second 
se obtained when the opposition responds. Tcolumn tho he shaded 

with an increase in the degree of relevance 
fo

region represents the party that changes position. 

Figure 7 shows that when the degree of flexibility of the 
government party is less than that of the opposition party, the 
increment in voters when the government party chooses a 
policy is insensitive to the weight given to the issues, but 
when the opposition party responds, the number of voters it 
captures increases 

r the first issue. 

Finally, as Figures 8 and 9 indicate, when the radii are 
equal for the two parties, the larger the radii, the greater is the 
increment in the number of voters captured for larger  , no 
matter which party chooses a position. Similarly to the 
previous cases, the responding party obtains an increment of 
voters that is greater than that obtained by the first party that 
chooses a position. 

As a general conclusion, the party that responds to the 
movement of the other obtains more votes because it has 
previous knowledge of the region where the other party must 
locate. On the one hand, for low degrees of flexibility, there is 
little sensitivity to the degree of importance of the issues for 
either party. On the other hand, for small values of  , the 

 

Fig. 7 Percentage increments in vote capture for R1=1, R2=3: the 
first column represents the percentage increments in vote capture 

when the government party chooses a position, and the second 
column those obtained when the opposition responds. The shaded 

ion represents the party that changes positioreg n. 

 

Fig. 8 Percentage increments in vote capture for R1=1, R2=1: the 

first column represents the percentage increments in vote capture 

when the government party chooses a position, and the second 

column those obtained when the opposition responds. The shaded 

ion represents the party that changes positioreg n. 

Consequently, knowledge of the methodology presented 
here by political parties may be useful for them to prepare 
their strategies. 

It should be noted that this example has been developed to 
illustrate the theoretical model. It does not claim to be an exact 
description of the political reality of Spain. 

 
 

response of the opposition is not as profitable for it as when 
  is large. 
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Fig. 9 Percentage increments in vote capture for R1=2, R2=2: the 

first column represents the percentage increments in vote capture 
when the government party chooses a position, and the second 

column those obtained when the opposition responds. The shaded 
region represents the party that changes position. 

 

V. CONCLUSIONS 

This research has dealt with the design of optimum political 
strategies in the face of significant changes in the situation 
that calls for making the requirements more flexible. This 
study was performed using a discrete geometric model based 
on the techniques of computational geometry. The result is not 
only a scientific description, but also one which is helpful in 
making decisions. 

It is known that the concepts of computational geometry 
applied to economics also make it possible to solve problems 
in the area of political economy, for example, the problem of 
winning the greatest number of votes. In this research, the 
techniques used have provided a new vision whose most 
relevant contributions are, on the one hand, the consideration 
of the variable importance of political issues in a country at a 
given moment, and on the other hand, the consideration of 
neighborhoods representing the degree of political flexibility 
which the parties may allow themselves with respect to 
particular issues. This flexibility is also affected by the 
importance factor for these issues, which may be 
indeterminate or imprecise. 

The techniques developed in this research enable political 
parties to design reply strategies by considering the options 
that their political adversary is likely to choose. Furthermore, 
algorithms are provided that obtains optimum solutions for 
maximum vote winning for a variety of proposals. 

The algorithms developed here make it possible to consider 
a wide range of cases illustrating various real situations, such 
as the importance of the issues considered, the flexibility of 
parties’ political programs with the intention of winning 
elections, and the assessment of the possible strategies that 
parties can follow. This is a general model that can be applied 

to other location problems, not only in the field of political 
competition. 

APPENDIX A 

a) Procedure to obtain the region A: 

Step 1: Find p' and p'' (Proposition 2) and define a counter c’ 
with initial value c’ = 0. 
Step 2: Let L be an empty list, and let m be another counter 
with initial value m=0. For each point vi, find the points of 
intersection between N1 and the elliptical neighborhood 
centered on vi that goes through t2.  

2.1. If there is no such intersection because N1 is 
entirely contained in the elliptical neighborhood 
centered on vi that goes through t2, increase m by 
one.  
2.2. If there is no intersection because the ellipses are 

 the 
 from t2, increase m by one unit. 

2.4. Othe

from t2, then include both points in 

 t2 and x’’i does not, then include x’i in 

include x’’i in 

in L according to their angle with 

L, 
proceedi

 let cc+1 , and if c>m, 

e t

gent, x’i is considered 

final extreme point is the point following that point in 
st L.  

 N2 

 
 N2 and the 

maximum intersection 0 and  respectively): 

disjoint, keep the same value of m. 
2.3. If there are two points of intersection outside
part of N1 visible

rwise: 
2.4.1. If both points belong to the part of N1 
visible 
list L. 
2.4.2. If x’i belongs to the part of N1 visible 
from
L. 
2.4.3. If x’’i belongs to the part of N1 visible 
from t2 and x’i does not, then 
L and increase c’ by one unit. 

Step 3. Sort the points 
respect to t1 (clockwise). 
Step 4. Let c c’+m and x  p’. Go through list 

ng as follows for each element: 
4.1. If it is an x’i element,
then let mc and x x’i ; 
4.2. If it is an x’’i lement, le  cc-1. 
Remark: If x’i and x’’i coincide because the 
corresponding ellipses are tan
to be previous to x’’i in list L. 

When the algorithm has completed execution, the counter m 
indicates the maximum number of points vi that the first party 
can win. The initial extreme point of the arc of N1 where the 
first party must be located is the point stored in the variable x, 
and the 
li
 

b) Procedure to obtain the region B: 

Input: neighborhood N2 and n  ellipses, D1,...,Dn, which are 
assumed not to be tangent to N2, none of them contained in
(this case is excluded from this approach), not all of them 
disjoint from N2, nor all of them containing N2 (in these two
cases, the area of maximum in rsection will bete

n
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Step 1: Intersect the borders of D1 and N2 and find the two 

points of intersection ,  (if the borders are disjoint, go to 

Step 3). 
1a 1b

Step 2: Use the algorithm in a) to find the area of maximum 
intersection of D2, …, Dn in the arc of D1 which joins 1  

th 1b  within N

a

wi b

in this arc. 
2, and the num er 1k  of ellipses that 

intersect 

Step 3: Repeat Steps 1 and 2 for D2, …, Dn.  

Step 4: Among all the arcs found in Step 2, select those where 
 is reached, i

ji
k

 ..., ,1
max


j  being the number of ellipses which 

have a non-disjoint border with N2. To this end, a list L is 
created with points ii  , , the extreme points of the arcs 

obtained in Step 2. The arcs in list L are not arranged in any 
particular order. 
Step 5: The intention is to obtain all the regions bounded by 
the arcs obtained in Step 4 or the regions bounded by the arcs 
obtained in Step 4 and the border of N2. There are two 
possibilities: 

5.1: The area to be found is solely bounded by the arcs 
obtained in Step 4. 

5.1.1. Select the extreme points that delimit the first 
unused arc of list L (call them p1, p2). The arc is marked 
as used. 
5.1.2. Search for point p1 between the extreme points of 
the rest of the unused arcs in the list. Given the arc with 
extreme points ii  ,  where p1 is located, with for 

instance p1= i , then a new value is assigned to p1 (p1 

 i ).  

5.1.3. The search process is repeated as many times as 
necessary until p1=p2 (closed region). 

5.2: The area to be found is bounded by the arcs obtained in 
Step 4 and by neighborhood N2. 

5.2.1. Select the extreme points that delimit the first 
unused arc of list L (call them p1, p2). The arc is marked 
as used (as in 5.1.1) 

5.2.2. Search for point p1 between the extreme 
points of the rest of the unused arcs in the list. If p1 
is found in one extreme point of the arc, the 
procedure in 5.1.2 is followed until p1 is not located 
at any extreme point of an unused arc; then p1 
belongs to neighborhood N2 (call it pB1), and p1 is 
assigned the value p2 (p1  p2). 
5.2.3. Once again, search for point p1 between the 
extreme points of the rest of the unused arcs in the 
list, according to the procedure in 5.2.2. At this 
moment, point p1 is a point of neighborhood B (call 
it pB2). The arc (pB1, pB2) in neighborhood N2 

belongs to the area of maximum intersection (closed 
region). 

Output: The regions found in Step 5 are the areas of 
maximum intersection in N2 of the set of ellipses, while the 
maximum intersection is: . 1max

 ..., ,1



i

ji
k

APPENDIX B 

TABLE I 
BEST POSITIONS FOR THE PARTIES IN THE VARIOUS CASES 

Input Movement of the 
government 
party: arc on 
which it should 
locate (P1, P2: 
boundary points 
of the arc) 

Response of the opposition 
party: region in which it 
should locate 
(extreme points of the arcs 
enclosing the region 
indicated below) 

R1=3 
R2=1 
α=1/3 

P1=( 
3.169501,4.593561) 
P2=( 3.174827, 
4.591416) 

Ellipse 306            p1   p2 

Ellipse 1550          p2   p3 

Arc in the boundary of N2      p1  
p3 

p1=( 2.418245 , 7.820538 ) 
p2=(2.416555, 7.821072) 

p3=(2.405915, 7.815910) 
Ellipse 306 is centered on 
(0.564425,4.889248) and has radius 
2.621804. 
Ellipse 1550 has center 
(8.715210,1.321082) and radius 
6.433578. 
Ellipse 505            p1   p2 

Ellipse 1671          p2   p3 

Arc in the boundary of N2      p1  
p3 

p1=( 2.337616, 7.791866) 
p2=(2.330703, 7.793956) 

p3=(2.247139, 7.763952) 
Ellipse 505 is centered on 
(0.530702,4.811335) and has radius 
2.647771. 
Ellipse 1671 has center 
(3.496017,6.098041) and radius 
1.539504. 

R1=3 
R2=1 
α=1/2 

P1=( 
3.743043,4.249786) 
P2=(3.757103, 
4.234202) 
 
Another arc which 
gives the maximum 
number of voters 
obtained: 
P1’=( 3.512932, 
4.484611) 
P2’=(3.546029, 
4.453017) 

Ellipse 32            p1   p2 

Ellipse 1671          p2   p3 

Arc in the boundary of N2      p1  
p3 

p1=(1.694445,7.488944) 
p2=(1.688137, 7.490324) 

p3=(1.686692,7.488446) 
Ellipse 32 is centered on 
(0.365218,1.428697) and has radius 
4.387108. 
Ellipse 1671 has center 
(3.496017,6.098041) and radius 
1.613518. 

R1=3 
R2=1 
α=2/3 

P1=(2.596293, 
5.762297) 
P2=(2.599790, 
5.759092) 
 
Other arcs which give 
the maximum number 
of voters obtained: 
P1’=(2.535108, 
5.817093) 
P2’=(2.543070. 

Ellipse 1132            p1   p2 

Ellipse 1607            p2   p3  

Ellipse 1364            p3  p4 

Arc in the boundary of N2        p1  
p4 

p1=(2.359936, 7.541695) 
p2=(2.283496, 7.603309) 

p3=(2.207489, 7.543660) 
p4=(2.136771, 7.343159) 
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5.810098) 
 
P1’’=(2.545452, 
5.807996) 
P2’’=(2.577728, 
5.779176) 

 
Ellipse 1132 has center 
(0.979778,4.242790) and radius 
2.213025. 
Ellipse 1607 has center 
(2.663161,6.509064) and radius 
0.703720. 
Ellipse 1364 has center 
(5.771352,4.904492) and radius 
3.284684. 

R1=1 
R2=3 
α=1/3 

P1=( 1.489680, 
2.450826) 
P2=( 1.499298, 
2.446724) 

Ellipse 743            p1   p2 

Ellipse 1172          p2   p3 

Arc in the boundary of N2      p1  
p3 

p1=(2.286557, 5.257979) 
p2=(2.266290, 5.268999) 

p3=(2.213969, 5.251504) 
Ellipse 743 is centered on 
(0.631504,3.751030) and has radius 
1.557882. 
Ellipse 1172 has center 
(4.873116,1.323127) and radius 
3.555998. 

R1=1 
R2=3 
α=1/2 

P1=( 1.544457, 
2.452616) 
P2=( 1.550957, 
2.446748) 

Ellipse 589            p1   p2 

Ellipse 2076          p2   p3 

Arc in the boundary of N2      p1  
p3 

p1=(1.925686, 4.669878) 
p2=(1.919273, 4.676218) 

p3=(1.907953, 4.668551) 
Ellipse 589  is centered on 
(0.637529,3.373318) and has radius 
1.292366. 
Ellipse 2076 has center 
(4.179266,1.327515) and radius 
2.856692. 
Ellipse 1088            p1   p2 

Ellipse 1259            p2   p3 

Arc in the boundary of N2        p1  
p3 

p1=(1.742155, 4.659742) 
p2=(1.740639, 4.661013) 

p3=(1.738912, 4.659634) 
Ellipse 1088 has center 
(0.589114,3.286370) and radius 
1.268001. 
Ellipse 1259 has center 
(4.201648,1.577914) and radius 
2.789451. 

R1=1  
R2=3  
α=2/3 

P1=( 1.572131, 
2.453529) 
P2=( 1.575781, 
2.446759) 

Ellipse 562            p1   p2 

Ellipse 1172          p2   p3 

Arc in the boundary of N2      p1  
p3 

p1=(0.977010, 3.779085) 
p2=(0.976192, 3.779317) 

p3=(0.976182, 3.779287) 
Ellipse 562 is centered on 
(0.642039,1.412198) and has radius 
1.393624. 
Ellipse 1172 has center 
(4.873116,1.323127) and radius 
3.483528. 

R1=1  
R2=1  
α=1/3 

P1=( 1.489680, 
2.450826) 
P2=( 1.499298, 
2.446724) 

Ellipse 418            p1   p2 

Ellipse 2175          p2   p3 

Arc in the boundary of N2      p1  

p3 

p1=(2.006948, 7.709539) 
p2=(1.952059, 7.721772) 

p3=(1.884102, 7.691843) 
Ellipse 418 is centered on 
(0.682940,4.806818) and has radius 
2.490286. 
Ellipse 2175 has center 
(7.491842,1.378939) and radius 
6.086933. 

R1=1  
R2=1  
α=1/2 

P1=( 1.544457 
2.452616) 
P2=( 1.550957 
2.446748) 
 

Ellipse 700            p1   p2 

Ellipse 1793          p2   p3 

Arc in the boundary of N2      p1  
p3 

p1=(2.379556, 7.720046) 
p2=(2.375580, 7.722411) 

p3=(2.328396, 7.687796) 
Ellipse 700 is centered on 
(0.596188,4.726646) and has radius 
2.463823. 
Ellipse 1793 has center 
(7.033595,1.323640) and radius 
5.596489. 

R1=1  
R2=1  
α=2/3 

P1=( 1.572131, 
2.453529) 
P2=( 1.575781, 
2.446759) 

Ellipse 28            p1   p2 

Ellipse 1138          p2   p3 

Arc in the boundary of N2      p1  
p3 

p1=(2.116767, 7.329680) 
p2=(2.116462, 7.330045) 

p3=(2.115713, 7.328988) 
Ellipse 28 is centered on 
(0.328474,4.341029) and has radius 
2.260385. 
Ellipse 1138 has center 
(6.274364,1.439683) and radius 
4.805298. 

R1=2 
R2=2 
α=1/3 

P1=( 2.627055, 
3.386335) 
P2=( 2.717063, 
3.338820) 

Ellipse 89            p1   p2 

Ellipse 1307          p2   p3 

Arc in the boundary of N2      p1  
p3 

p1=(2.392977, 6.515552) 
p2=(2.345330, 6.533560) 

p3=(2.274134, 6.497341) 
Ellipse 89 is centered on 
(0.585031,4.164312) and has radius 
2.185202. 
Ellipse 1307 has center 
(7.419395,1.493408) and radius 
5.051481. 

R1=2 
R2=2 
α=1/2 

P1=( 2.095262, 
3.800873) 
P2=( 2.109216, 
3.792126) 

Ellipse 1006            p1   p2 

Ellipse 1855          p2   p3 

Arc in the boundary of N2      p1  
p3 

p1=(2.183080, 6.132326) 
p2=(2.177297, 6.137852) 

p3=(2.165887, 6.128760) 
Ellipse 1006 has center 
(0.551302,4.430235) and radius 
1.667306. 
Ellipse 1855 has center 
(5.258916,2.258812) and radius 
3.503093. 

R1=2 
R1=2 
α=2/3 

P1=( 2.628924, 
3.340859) 
P2=( 2.639543, 
3.318469) 

Ellipse 421            p1   p2 

Ellipse 1628          p2   p3 

Arc in the boundary of N2      p1  
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p3 

p1=(2.143013, 5.522090) 
p2=(2.141720, 5.523311) 

p3=(2.140787, 5.521376) 
Ellipse 421  is centered on 
(0.689233,2.445692) and has radius 
2.136288. 
Ellipse 1628 has center 
(6.381564,1.429795) and radius 
4.191635. 
Ellipse 1145            p1   p2 

Ellipse 1888            p2   p3 

Arc in the boundary of N2        p1  
p3 

p1=(2.118679, 5.514451) 
p2=(2.116147, 5.515986) 

p3=(2.114849, 5.513282) 
Ellipse 1145 has center 
(0.894372,1.480718) and radius 
2.534354. 
Ellipse 1888 has center 
(6.421616,1.381399) and radius 
4.249272. 
 
Ellipse 1228            p1   p2 

Ellipse 2154            p2   p3 

Arc in the boundary of N2        p1  
p3 

p1=(2.113209, 5.512784) 
p2=(2.102852, 5.518395) 

p3=(2.100366, 5.508943) 
Ellipse 1228 has center 
(0.979189,1.348329) and radius 
2.576476. 
Ellipse 2154 has center 
(6.276131,3.317988) and radius 
3.636588. 
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