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Abstract: Numerical schemes for free boundary prob-
lems are categorized into two groups: level-set approaches
and iterative approaches. In this paper we present a com-
bined approach for computing numerical solutions of a free
boundary problem. At first, a rough numerical solution is ob-
tained by a level-set method. Then, using the solution as an
initial guess, we use an iterative scheme to obtain more pre-
cise solution. To design an iterative scheme, we calculate first
variations with respect to boundary perturbation of quantities
related to the free boundary problem. Such a variation with
respect to domain perturbation is called Hadamard’s varia-
tion. Since our iterative scheme is designed with Hadamard’s
variations, it is fast and stable. If the iteration starts with
good initial guess obtained by a level-set method, iteration
converges almost immediately. Numerical examples show
the effectiveness and usefulness of our approach.

Keywords:Filtration Problem, Free boundary problems,
Hadamard’s variations, Traction method

I. I NTRODUCTION

Suppose that there are two disjoint water reservoirs sep-
arated by a dam made by porous media (earth, for example)
(see Figure 1). The different surface levels produces a water
flow inside the dam. The problem to find the flow region and
the velocity potential function is called thefiltration prob-
lem (dam problem or seepage problem, etc). In many text
books, the filtration problem has been considered as one of
the most typical examples of free boundary problems; see
[6], [13], [15].

Let us denote the region of the dam byDAM. Numerical
schemes for free boundary problems are categorized into two
methods; level-set approaches and iterative approaches. In
level-set approaches, a free boundary problem is transformed
into a problem defined in the whole domainDAM. Typically,
the flow regionΩ is expressed asΩ = {x ∈ DAM|γ(x) > 0},
where the functionγ is a solution of the transformed prob-
lem. In iterative approaches, staring from an initial guess
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Figure 1: The configuration of the dam.

Ω(0), the k-th flow regionΩ(k) is updated gradually until
Ω(k) satisfies certain conditions numerically.

The purpose of this paper is to present a combined ap-
proach for the filtration problem. At first, we use a level-
set method to obtain a numerical solution of the filtration
method. Then, using the obtained solution as the initial
guess, we adopt an iterative scheme to refine the flow re-
gion. For that purpose we use the iterative scheme presented
in [17]. Since the iteration starts from a good initial guess and
our iterative scheme is defined based on solid mathematics,
the algorithm converges quickly to the solution.

The following is the outline of this paper. In Section 2,
we give the rigorous definition of the filtration problem. In
Section 3 we explain a variational principle of the filtration
problem which was introduced in [16]. In the formulation,
functionalsa, b andJ := a− b are defined in a set of subsets
of DAM 1, and is showed that, for an admissible domainΩ,
J(Ω) = 0 if and only if Ω is the exact flow region. With
this variational principle, we try to updatek-th flow region
Ω(k) to Ω(k+1) so thatJ(Ω(k+1)) < J(Ω(k)). To design
such an iterative scheme, it is important to know how the
functionalJ would be varied when the free boundary is per-

1Elements of this set are calledadmissible domains, which are candidates
for the solution of the filtration problem.
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turbed. Such variations with respect to boundary perturbation
are calledHadamard’s variations. In Section 4, we give the
first Hadamard variations of the functionalsa, b andJ . In
Section 5, using the obtained first variations, we introduce
an iterative scheme which is presented in [17]. The iterative
scheme is call thetraction method. The idea of the trac-
tion method is given by Azegami [4]. The traction method is
the first iterative scheme which uses the first variation of any
variational principle of the filtration problem. Since the trac-
tion method is based on rigorous mathematical analysis, it is
robust and stable. In Section 6, some of level-set approaches
are surveyed. In Section 7, a numerical example is given.

II. D EFINITION OF THE FILTRATION PROBLEM

In this section we briefly explain the definition of the
two-dimensional filtration (or dam) problem using the nota-
tion of [16]. We assume thatDAM is a Lipschitz domain in
IR2. We also assume that the boundary∂(DAM) consists of
three parts:B1, the impervious part;B2, the part contact
with air; andB3 = B1

3 ∪B2
3 , the part contact with the water

reservoirsR1 andR2. We assume that the level of the water
reservoirs denoted byh1 andh2 (h1 > h2) are different and
there exists a steady water flow insideDAM. We denoteΩ as
the portion of water inDAM which not a priori known. The
boundary∂Ω consists of four parts:

Γ1 = B1 (the impervious part)

Γ2 ⊂ DAM (the free boundary)

Γi
3 = Bi

3 (the part in contact with

water reservoirRi, i = 1, 2)

Γ3 = Γ1
3 ∪ Γ2

3

Γ4 ⊂ B2 (the part in contact with air)

Let Γ ⊂ IR2 be a curve. Letπ : IR2 → IR be the canon-
ical projection defined byπ((x1, x2)) := x1. In this paper,
we say thatΓ is agraph in the direction ofx2, if (π|Γ)−1(x1)

is connected for allx1 ∈ π(Γ). For the configuration of the
Lipschitz domainDAM, we assume the following properties
in this paper:

(1) There are two reservoirs of water (one of them may be
empty) separated by the dam. We assume without loss
of generality that the water level of the left-hand side
reservoir is higher than that of the other.

(2) Each reservoir contacts the impervious base.

(3) B1 ⊂ ∂(DAM) (impervious part) andB2 ∪ B3 ⊂
∂(DAM) (air and water parts) are continuous, piecewise
C2 curves, both are graphs in the direction ofx2, and
B2 ∪B3 lies aboveB1.

The problem is to find the flow regionΩ and the velocity
potential functionu of the flow. To define the boundary value
of u we introduce the following subsets ofDAM. Letζ2 be the
point where the surface of the left reservoir contacts∂(DAM).

That is, ζ2 = B1
3 ∩ B2. Let sufficiently smallη > 0 be

taken and fixed. Let us assume thatDAM can be split into two
connected subsets by a segmentl ⊂ DAM such that one of
its end points isζ2 and the other is onB1. Suppose that the
angle betweenB1

3 andl is η. Then,DAM0 ⊂ DAM is defined
as the region betweenB1

3 andl (see Figure 2). Set

DAM1 :=
{

x = (x1, x2) ∈ DAM −DAM0
∣

∣ x2 ≥ h2

}

,

DAM2 :=
{

x = (x1, x2) ∈ DAM −DAM0
∣

∣ x2 < h2

}

.

We then defineu0 ∈ H1(DAM) by

u0(x) :=











h1 onB1
3 ,

x2 in DAM1,

h2 in DAM2.

(In DAM0, u0 is defined in an appropriate way.)

DAM1
DAM1

DAM2

DAM2

DAM0
DAM0

ζ2
ζ2

Figure 2:DAMj (j = 0, 1, 2).

Then, thefiltration problem is to find the flow region
Ω ⊂ DAM and the piezometric function (velocity potential)u

defined onΩ which satisfies the boundary value problem

∆u = 0 in Ω,

∂u

∂ν
= 0 onΓ1,

u = u0 and
∂u

∂ν
= 0 onΓ2,

u = u0 onΓ3,

u = u0 and
∂u

∂ν
≤ 0 on Γ4,

(1)

whereν := (ν1, ν2) is the unit outer normal vector of∂Ω.
Note that on the free boundary, both Dirichlet’s and Neu-
mann’s conditions are imposed. In other words, the free
boundary is determined so that the both conditions are sat-
isfied at once. The condition∂u∂ν ≤ 0 is imposed onΓ4. The
physical meaning of this condition is that water flow comes
from inside to outside onΓ4. This condition is natural and is
important for the uniqueness of the exact solution.

In the case that the dam is a rectangle, Baiocchi [5] trans-
formed the problem to a variational inequality. Later, Alt
[1] and Brezis-Kinderlehrer-Stampacchia [9] gave different
approaches which can treat general situations, and proved
the existence of a solution of the filtration problem. The
uniqueness of the solution was proved by Alt-Gilardi [3] and
Carrillo-Chipot [11]. Note that the above mentioned results
are obtained using level-set methods.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 5, 2011 54



III. A V ARIATIONAL PRINCIPLE OF THEFILTRATION

PROBLEM

For both mathematical analysis and numerical computa-
tion, it would be nice if we have a variational principle of the
filtration problem. In this section, we explain a variational
principle introduced in [16]. The idea is very simple. Let
Ω ⊂ DAM be a candidate of the exact solution of the filtration
problem (that is, the true flow region). LetuΩ, wΩ ∈ H1(Ω)

be a two harmonic functions with

uΩ = u0,
∂wΩ

∂ν
= 0 onΓ2.

We suppose thatuΩ, wΩ satisfy the boundary conditions of
(1) onΓ1 ∪ Γ3 ∪ Γ4. If Ω is the exact solution,uΩ must be
equal towΩ. If Ω is not the exact solution, the “difference
betweenuΩ andwΩ” should represent the distance between
Ω and the exact solution in some way. Although, one may
take any norm to measure the “difference betweenuΩ and
wΩ”, we measure the difference in the following manner.

At first, we define the subsetsA(Ω), B(Ω) ⊂ H1(Ω) by

A(Ω) :=
{

v ∈ K∗(Ω)
∣

∣ v = u0 onΓ2 ∪ Γ3 ∪ Γ4

}

,

B(Ω) :=
{

v ∈ H1(Ω)
∣

∣ v = u0 on Γ3 ∪ Γ4

}

,

whereK∗(Ω) is defined by

K(Ω) :=
{

v ∈ H1(Ω)
∣

∣ v = 0 onΓ1 ∪ Γ2 ∪ Γ3,

v ≥ 0 onΓ4

}

,

K∗(Ω) :=
{

v ∈ H1(Ω)
∣

∣ (∇v,∇χ) ≤ 0,

∀χ ∈ K(Ω)
}

.

Note that for a harmonic functionχ ∈ C0,1(Ω) ∩ C2(Ω), χ
belongs toK∗ if and only if ∂χ/∂n ≤ 0 onΓ4 in the sense
of distribution. Let a sufficiently large positive numberM0

be taken and fixed. Let alsoDΩ denote the Dirichlet integral
onΩ:

DΩ(v) :=
1

2

∫

Ω

|∇v|2dx.

Definition 1 Under the setting defined so far, a subsetΩ ⊂
DAM is calledadmissible if Ω satisfies the following condi-
tions: (1) Ω is a Lipschitz domain.(2) ∂Ω ⊃ B1 ∪ B3.
(3) ∂Ω − B1 ∪B3 is aC0,1 curve and is a monotone de-
creasing graph in the directionx2. (4) A(Ω) 6= ∅ 2 and
infv∈A(Ω) DΩ(v) ≤ M0. We denote byAD the set of all
admissible domains.

The functionala(Ω), b(Ω), J(Ω) : AD → IR are defined
by

a(Ω) := inf
v∈A(Ω)

DΩ(v), b(Ω) := inf
v∈B(Ω)

DΩ(v),

J(Ω) := a(Ω)− b(Ω).

2If the boundary∂Ω is very “wild”, A(Ω) could be empty. So we need
to assumeA(Ω) 6= ∅.

SinceA(Ω) ⊂ B(Ω), we haveJ(Ω) ≥ 0.
From the Dirichlet’s principle we know that the value

a(Ω) and b(Ω) are attained by the harmonic functionsuΩ

andwΩ (that is,a(Ω) = DΩ(uΩ) and b(Ω) = DΩ(wΩ)),
respectively, which satisfy the boundary conditions

{

uΩ = u0 onΓ2 ∪ Γ3 ∪ Γ4,
∂uΩ

∂ν ≤ 0 on Γ4,
∂uΩ

∂ν = 0 onΓ1,
(2)

wΩ = u0 onΓ3 ∪ Γ4,
∂wΩ

∂ν
= 0 onΓ1 ∪ Γ2. (3)

We have the following variational principle for the filtration
problem:

Theorem 2 ([16, Theorem 2.6]) We haveinfAD
J = 0 for

the functionalJ : AD → IR. Moreover, an admissible do-
mainΩ ∈ AD is a solution of the filtration problem if and
only if J(Ω) = infAD

J = 0.

IV. T HE HADAMARD VARIATIONS OF a(Ω) AND b(Ω)

By Theorem 2, the filtration problem may be solved (in
particular, numerically) by an optimization process. In an
optimization process, the boundary would be modified grad-
ually and, therefore, it is very important to know howa(Ω)
andb(Ω)would vary under perturbation of the domain (or the
boundary). Such variations with respect to domain perturba-
tion are called theHadamard variations. In this section
we give the first variations ofa(Ω) andb(Ω) with respect to
domain perturbation obtained in [17]. In the next section, we
present an iterative scheme using the obtained first variations.

Suppose that we haveΩ ∈ AD and try to modify it. Let
a vector fieldS ∈ W 1,∞(DAM; IR2) is given. We consider
the ordinary equation

dc

dt
(t) = S(c(t)), t ≥ 0,

c(0) = x, x ∈ DAM.

Then, for eachx ∈ DAM the solutionc(t) forms an integral
curve. Then,Tt(x) := c(t) satisfies the following:

• T0(x) = x, ∀x ∈ DAM.

• Tt is a diffeomorphism ofDAM for sufficiently smallt >
0.

• Tt is smooth with respect tot.

• Tt has the Taylor expansion

Tt(x) = x+ tS(x) + o(t).

We use thisTt as perturbations ofDAM.
Now, letΩ ∈ AD be a candidate of the solution of the

filtration problem. LetuΩ ∈ A(Ω) ⊂ H1(Ω) is the harmonic
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function which satisfiesa(Ω) = DΩ(uΩ), that is,

∆uΩ = 0 in Ω,

∂uΩ

∂ν
= 0 onΓ1,

uΩ = u0 onΓ2 ∪ Γ3 ∪ Γ4,

∂uΩ

∂ν
≤ 0 on Γ4.

(4)

To consider a perturbation ofΩ, only the free boundaryΓ2

andΓ4 would be moved. Hence, we may assume that

suppS ∩ ∂Ω ⊂ Γ2 ∪ Γ4. (5)

The weak form ofuΩ is

(∇uΩ,∇v)Ω = 0, ∀v ∈ V0(Ω),

uΩ = u0 onΓ2 ∪ Γ3 ∪ Γ4,

where(·, ·)Ω is the inner product ofL2(Ω) and

V0(Ω) :=
{

v ∈ H1(Ω)
∣

∣ v = 0 onΓ2 ∪ Γ3 ∪ Γ4

}

.

For a sufficiently smallt > 0, let Ωt := Tt(Ω) and
suppose thatΩt ∈ AD. SetΓt

2 := ∂Ωt ∩ DAM andΓt
4 :=

∂Ωt ∩B2. We also consider the harmonic functionuΩt
such

thata(Ωt) := DΩt
(uΩt

) where

DΩt
(uΩt

) =
1

2

∫

Ωt

|∇uΩt
|2 dx.

The harmonic functionuΩt
satisfies the boundary value prob-

lem

∆uΩt
= 0 in Ωt,

∂uΩt

∂ν
= 0 onΓ1,

uΩt
= u0 onΓt

2 ∪ Γ3 ∪ Γt
4,

∂uΩt

∂ν
≤ 0 on Γt

4.

Defining

V0(Ωt) :=
{

v ∈ H1(Ωt)
∣

∣ v = 0 onΓt
2 ∪ Γ3 ∪ Γt

4

}

,

the weak form foruΩt
is

(∇uΩt
,∇v)Ωt

= 0, ∀v ∈ V0(Ωt),

uΩt
= u0 onΓt

2 ∪ Γ3 ∪ Γt
4.

Note that we have

ṽ ∈ V0(Ωt) ⇐⇒ ṽ ◦ Tt ∈ V0(Ω). (6)

To show the theorem below, (6) plays an important role. Let
〈·, ·〉Γ2∪Γ4 denote the duality pair ofH−1/2(Γ2 ∪ Γ4) and
H1/2(Γ2∪Γ4). Then the first variationδa(Ω) can be defined
as

δa(Ω) := lim
t→+0

a(Ωt)− a(Ω)

t
,

where we can have the following theorem.

Theorem 3 ([17, Theorem 4.1]) LetΩ ∈ AD be an ad-
missible domain. Suppose that the perturbationTt(x) =

x + tS(x) + o(t) satisfies thatΩt := Tt(Ω) ∈ AD for all
sufficiently smallt > 0 and (5). Then, the first variation
δa(Ω) is written by

δa(Ω) =
1

2

〈

1−

(

∂pΩ
∂ν

)2

, δρ

〉

Γ2∪Γ4

,

wherep := uΩ−x2 andδρ := S ·ν is the normal component
of S.

Remark:(1) The functionpΩ = uΩ−x2 represents the water
pressure.
(2) If Γ2 is sufficiently smooth so that∂uΩ/∂x1 and
∂uΩ/∂x2 exist at almost all points onΓ2 in the classical
sense. Then, the first variation is written as an usual integral
overΓ2 ∪ Γ4:

δa(Ω) =
1

2

∫

Γ2∪Γ4

(

1−

(

∂pΩ
∂ν

)2)

δρds.

Recall thatΩ ∈ AD and the harmonic functionwΩ ∈
B(Ω) ⊂ H1(Ω) is a solution of the boundary value problem
(3). It satisfies the following boundary problem

∆wΩ = 0 in Ω,

wΩ = u0 onΓ3 ∪ Γ4,

∂wΩ

∂ν
= 0 onΓ1 ∪ Γ2.

(7)

Its weak form is

(∇wΩ,∇v)Ω = 0, ∀v ∈ V1(Ω),

wΩ = u0 onΓ3 ∪ Γ4,

where

V1(Ω) :=
{

v ∈ H1(Ω)
∣

∣ v = 0 onΓ3 ∪ Γ4

}

.

We now consider the harmonic functionwΩt
∈ B(Ωt)

which satisfies the boundary value problem

∆wΩt
= 0 in Ω,

wΩt
= u0 onΓ3 ∪ Γt

4,

∂wΩt

∂ν
= 0 onΓ1 ∪ Γt

2.

The weak form forwΩt
is

(∇wΩt
,∇v)Ω = 0, ∀v ∈ V1(Ωt),

wΩt
= u0 onΓ3 ∪ Γt

4,

with

V1(Ωt) :=
{

v ∈ H1(Ωt)
∣

∣ v = 0 onΓ3 ∪ Γt
4

}

.

The difficulty here comes from the fact that

ṽ ∈ V1(Ωt) ⇐⇒ ṽ ◦ Tt ∈ V1(Ω) (8)

is notvalid in general since the boundary pointζ5 := Γ2∩Γ4

may be “peeled off” by the perturbation (see Figure 3).
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ζ5

Γ4

Γ2

Tt(ζ5)

Figure 3: The boundary pointζ5 may be “peeled off” by the
perturbation.

Therefore, we need to impose an additional assumption on
perturbation. If (8) holds for all sufficiently smallt ≥ 0,
the perturbationTt of Γ2 ∪ Γ4 is said to satisfy theNPO
condition. (The term “NPO” stands for “Non-Peeling-Off.”)
Let b(Ωt) := DΩt

(wΩt
) where

DΩt
(wΩt

) =
1

2

∫

Ωt

|∇wΩt
|2 dx.

Then, the first variationδb(Ω) of b(Ω) is defined by

δb(Ω) := lim
t→0+

b(Ωt)− b(Ω)

t

and we have the following theorem.

Theorem 4 ([17, Theorem 5.1]) LetΩ ∈ AD be an admissi-
ble domain andwΩ ∈ B(Ω) be such thatb(Ω) = DΩ(wΩ).
Suppose that the perturbationTt(x) = x+ tS(x) + o(t) sat-
isfies thatΩt := Tt(Ω) ∈ AD for all sufficiently smallt > 0

and (5). Moreover, we assume that the NPO condition (8)
holds. Then, the first variationδb(Ω) of the functionalb(Ω)
is written by

δb(Ω) =
1

2

〈

(

∂wΩ

∂s

)2

, δρ

〉

Γ2

,

where∂/∂s is tangential derivative alongΓ2 andδρ := S ·n
is the normal component ofS.

Corollary 5 ([17, Corollary 5.2]) Suppose that all assump-
tions of Theorem 3 and 4 hold. Then, the first variation
δJ(Ω) of the functionalJ(Ω) := a(Ω) − b(Ω) is written
by

δJ(Ω) := lim
t→0+

J(Ωt)− J(Ω)

t

=
1

2

〈

1−

(

∂pΩ
∂ν

)2

−

(

∂wΩ

∂s

)2

, δρ

〉

Γ2

. (9)

Moreover,δJ(Ω) = 0 for any sufficiently smallδρ if and only
if Ω ∈ AD is the solution of the filtration problem.

V. THE TRACTION METHOD — AN ITERATIVE SCHEME

In this section we present an iterative scheme based on
the Hadamard variation obtained in the previous section.
Suppose that we are trying to obtain the flow regionΩ by an
iterative scheme. LetΩ(k) andΓ(k)

2 ⊂ ∂Ω(k) bek-th guess
of the flow region and the free boundary, respectively. Since
the first variation of the functionalJ : AD → IR is

δJ(Ω(k)) =
〈

1−

(

∂pΩ(k)

∂ν

)2

−

(

∂wΩ(k)

∂s

)2

, δρ
〉

Γ
(k)
2

,

an intuitive iterative scheme is defined by

FV (x) := 1−

(

∂pΩ(k)

∂n

)2

−

(

∂wΩ(k)

∂s

)2

,

Γ
(k+1)
2 :=

{

x+ ǫFV (x)ν(x)
∣

∣

∣
x ∈ Γ

(k)
2

}

, (10)

for x ∈ Γ
(k)
2 , whereǫ is a positive dumping parameter and

ν(x) is the unit outer normal vector atx ∈ Γ
(k)
2 . This scheme

(10) might be called asteepest descent method. However, nu-
merical experiments show that this scheme does not work at
all even whenǫ is set very small. After a several iterations,
Γ
(k)
2 becomes very “jagged” and computation cannot be car-

ried out any more.
We next propose another iterative scheme which is de-

fined in the following way. Letz(k) ∈ H1(Ω(k)) be the solu-
tion of the boundary value problem:

∆z(k) = 0 in Ω(k),

z(k) = 0 onΓ3 ∪ Γ
(k)
4 ,

∂z(k)

∂ν
= 0 onΓ1,

∂z(k)

∂ν
= FV onΓ(k)

2 .

(11)

Then, the iteration is defined by

Γ
(k+1)
2 :=

{

x− z(k)(x)ν(x)
∣

∣

∣
x ∈ Γ

(k)
2

}

.

The method is called thetraction method and was presented
by Azegami (see [4] [14] and the references therein) as a nu-
merical iterative scheme for optimal shape design. Numer-
ical experiments show that the traction method works very
well for the filtration problem. Beginning from a suitably
defined initial guess, the iteration converges smoothly to a
numerical solution.

In the following, we point out the two significant natures
of the traction method. Firstly, the traction method decreases
the value ofJ(Ω) in its iterative process. LetΩ ⊂ DAM be an
admissible domain. Suppose that the perturbed domainΩτ is
defined by the traction method

Γτ
2 :=

{

x− τz(x)ν(x)
∣

∣

∣
x ∈ Γ2

}

, τ > 0,
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wherez(x) is a solution of the boundary value problem sim-
ilar to (11). Lettingδρ := −z andFV := ∂z/∂n onΓ2 and
δρ := FV := 0 elsewhere on∂Ω, we have

〈FV, δρ〉Γ2
=

〈

∂z

∂n
, (−z)

〉

Γ2

=

〈

∂z

∂n
, (−z)

〉

Ω

= −

∫

Ω

|∇z|2dx

and

J(Ωτ ) =J(Ω) + τ δJ(Ω) + o(τ)

=J(Ω) + τ 〈FV, δρ〉Γ2
+ o(τ)

=J(Ω)− τ

∫

Ω

|∇z|2dx+ o(τ).

Therefore, we may expect

J(Ωτ ) < J(Ω)

at each step of the traction method. This nature of the traction
method is already pointed out by Kaizu and Azegami [14] in
a different context.

Secondly, numerical experiments suggest that the trac-
tion method seems to have a stabilizing and smoothing effect
of the free boundary. Although, the mechanism of this effect
of the traction method is not understood completely at this
point, we here give a partial explanation. Let thek-th guess
Γ
(k)
2 of the free boundary is inC1,α class (0 < α < 1). Then,

it follows from the regularity theory of linear elliptic PDEs
that

uΩ(k) , pΩ(k) , wΩ(k) ∈ C1,α(Ω(k) ∪ Γ
(k)
2 ) and

FV := 1−

(

∂pΩ(k)

∂ν

)2

−

(

∂wΩ(k)

∂s

)2

∈ C0,α(Γ
(k)
2 ).

Since the Neumann-Dirichlet map

C0,α(Γ2) ∋ FV =
∂z(k)

∂n
7→ z(k) ∈ C1,α(Γ2)

is used in the iterative procedure of the traction method, the
updatedΓ(k+1)

2 is in C1,α class again. Hence, the traction
method at least preserves the smoothness of the free bound-
ary. IfΓ(k)

2 is updated by the “steepest descend method” (10),

however,Γ(k+1)
2 is only inC0,α. Probably, this is a reason of

the unstable behaviour of the scheme (10).

VI. L EVEL-SET APPROACHES

In this section, we survey level-set approaches briefly.
There are two types of level-set approaches; one of them re-
formulates the problem into a variational inequality when the
damDAM is a rectangle. In the other level-set approach, the
filtration problem is reformulated into a problem to find a
pair (p, γ), wherep is the pressure of the flow andγ is the
characteristic function of the flow region. In this section we
explain them briefly.

In the case that the dam is a rectangle, Baiocchi [5] trans-
formed the problem into a variational inequality, and show
the existence and uniqueness of the solution of the filtration
problem (see also [15]). Leta > 0, h1 > h2 > 0 be positive
constants. LetDAM := (0, a) × (0, h1) be a rectangle dam.
Let the functiong ∈ H2,∞(DAM) be defined by

g(x1, x2) :=











a−x1

2a (h1 − x2)
2 + x1

2a (h2 − x2)
2,

0 < x2 < h2

a−x1

2a (h1 − x2)
2, h2 < x2 < h1

Let K ⊂ H1(DAM) be defined by

K := {v ∈ H1(DAM) :v ≥ 0 in DAM,

v = g on∂(DAM)}

From the theory of variational inequalities (see [15]), there
exists a unique solutionw ∈ K of the variational inequality

∫

DAM

∇w · ∇(v − w) ≥ −

∫

DAM

(v − w), ∀v ∈ K.

Then, it is shown that the domainΩ := {x ∈ DAM : w > 0}
is the desired flow region andu := x2 − ∂w/∂x2 is the de-
sired velocity potential. Unfortunately, this beautiful theory
works only for the cases that the both sides walls of the dam
is vertical.

Later, Alt [1] and Brezis-Kinderlehrer-Stampacchia [9]
gave a different approach which can treat general situations,
and proved the existence of a solution of the filtration prob-
lem. The uniqueness of the solution was proved by Alt-
Gilardi [3] and Carrillo-Chipot [11]. In this approach, the fil-
tration problem is formulated to find a pair(p, γ) as is stated
in the following. Define the functionp0 by

p0 :=

{

hi − x2 onBi
3, i = 1, 2

0 onB2.

Let e := (0, 1).

Problem 6 Find a pair (p, γ), wherep ∈ H1(DAM), γ ∈
L∞(DAM) such that

0 ≤ γ ≤ 1, γ = 1 on{p ≥ 0}

p = p0 onB2 ∪B3 such that
∫

DAM

∇ζ · (∇p+ γe) ≤ 0, ∀ζ ∈ H1(DAM)

with ζ ≥ 0 onB2 andζ = 0 onB3.

As stated above, it has been proved that there exists a
unique solution(p, γ). Also, it is shown that{p > 0} is
the desired flow region,γ is the characteristic function of the
region{p > 0}: γ = χ{p>0}, andu := p+x2 is the velocity
potential of flow insideDAM (see [13] for detail).
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As long as the authors know, any level-set approaches for
the filtration problem so far are modifications of one of the
above mentioned theorems. Numerical analysis for the filtra-
tion problem as a variational inequality was started by Baioc-
chi and his school. For their works and the development dur-
ing 1970s and 80s on this subject, see, for example, [7] and
[6] and references therein. The first numerical scheme based
on the formulation stated as Problem 6 is given by Alt him-
self [2]. For other numerical schemes based on Problem 6,
see, for example, [10], [8]. It seems that numerical schemes
based on the formulation of Problem 6 have not been con-
sidered thoroughly. Further researches, therefore, are desired
and expected.

VII. A N UMERICAL EXAMPLE

In this section, we give a numerical example which show
the effectiveness of our combined approach. Let positive
numbersh1 > h2 > 0, a > 0 be given. AsDAM we take
a rectangleDAM := (0, h1)× (0, a) (see Figure 4).

h1

h2

a

DAM

Γ1

Γ1
3

Γ2
3

Γ4

x1

x2

Figure 4: A rectangle dam.

As is stated in the previous section, the filtration problem
is reformulated as a variational inequality ifDAM is rectan-
gle. The existence and the uniqueness, therefore, are proved
nicely. First, we compute the solution of the variational in-
equality and use it to obtain the initial guess for iterative
scheme. We set the valuesa = 1.62, h1 = 3.22, h2 = 0.84.
In Figure 5 we show the numerical solution of the variational
inequality. Suppose thatw ∈ H1(DAM) is the solution of the
variational inequality. Then the flow regionΩ is represented
asΩ = {x ∈ DAM : w(x) > 0}. In Figure 5, therefore, we
draw all triangle elements on which the finite element solu-
tion is positive. The union of such elements can be regarded
as a numerical approximation of the flow region.

Then, we use the approximated region as an initial region
for the traction method (Figure 6).

After several steps, the traction method converges
smoothly, and we obtain a numerical solution.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

"Sol_Variational_Inequality"

Figure 5: The numerical solution of the variational
inequality.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

"initial"

Figure 6: The initial guess made by the variational
inequality.
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Figure 7: The numerical solution of the traction method.
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