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Abstract: Numerical schemes for free boundary prob-
lems are categorized into two groups: level-set approaches
and iterative approaches. In this paper we present a com-
bined approach for computing numerical solutions of a free
boundary problem. At first, a rough numerical solution is ob-
tained by a level-set method. Then, using the solution as an
initial guess, we use an iterative scheme to obtain more pre-
cise solution. To design an iterative scheme, we calculate first
variations with respect to boundary perturbation of quantities
related to the free boundary problem. Such a variation with
respect to domain perturbation is called Hadamard's varia- Figure 1: The configuration of the dam.
tion. Since our iterative scheme is designed with Hadamard'’s
variations, it is fast and stable. If the iteration starts with
good initial guess obtained by a level-set method, iteratioQ(o), the k-th flow region Q™ is updated gradually until
converges almost immediately. Numerical examples shoyy(k) satisfies certain conditions numerically.
the effectiveness and usefulness of our approach.
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The purpose of this paper is to present a combined ap-
proach for the filtration problem. At first, we use a level-
set method to obtain a numerical solution of the filtration
method. Then, using the obtained solution as the initial
|. INTRODUCTION guess, we adopt an iterative scheme to refine the flow re-
Fion. For that purpose we use the iterative scheme presented

Suppose that there are two disjoint water reservoirs se g)[17]. Since the iteration starts from a good initial guess and

arated by a dam made by porous media (earth, for examp : . . X . .
. . our iterative scheme is defined based on solid mathematics,
(see Figure 1). The different surface levels produces a water . : .
oS . . e algorithm converges quickly to the solution.
flow inside the dam. The problem to find the flow region an The following is th tine of thi r In Section 2
the velocity potential function is called tHitration prob- € foflowing IS the outiine ot this paper. ection <,

lem (dam problem or seepage problemetc). In many text we give the rigorous deflnlt'lorj of the.fllt.ratlon probl.em. . In
books, the filtration problem has been considered as one %f;ctlon 3 we explain a variational principle of the filtration
' roblem which was introduced in [16]. In the formulation,

ng [T%St[;é?_lcal examples of free boundary problems; S‘%nctional&z, bandJ := a — b are defined in a set of subsets

. . of um 1, and is showed that, for an admissible dom@in
Let us denote the region of the dam Byv. Numerical M I W 1581 \

. . J(Q) = 0if and only if Q is the exact flow region. With
schemes for free boundary problems are categorized into tvt\fus variational principle, we try to updateth flow region

methods; level-set approaches and iterative a_pproaches.d@) to Q0+ so thatJ(Q*+D) < J(QM). To design
level-set approaches, a free boundary problem is transformed . . L
. . . . such an iterative scheme, it is important to know how the
into a problem defined in the whole domddav. Typically, . . .

) ) functional.J would be varied when the free boundary is per-
the flow regior(} is expressed &3 = {x € Dam|vy(x) > 0},
where the functiony is a solution of the transformed prob- 1Elements of this set are calledimissible domainsvhich are candidates
lem. In iterative approaches, staring from an initial gues®r the solution of the filtration problem.
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turbed. Such variations with respect to boundary pertushati That is, {, = B_§ N B,. Let sufficiently smallp > 0 be
are calledHadamard's variations. In Section 4, we give the taken and fixed. Let us assume tfiat« can be split into two
first Hadamard variations of the functionalsb and.J. In  connected subsets by a segmémt am such that one of
Section 5, using the obtained first variations, we introduciés end points ig> and the other is o®;. Suppose that the
an iterative scheme which is presented in [17]. The iterativengle betweeB} and! is . Then,Dam® C D is defined
scheme is call théraction method. The idea of the trac- as the region betwee: andl (see Figure 2). Set
tion method is given by Azegami [4]. The traction method is
the first iterative scheme which uses the first variation of any Dut’ i={w = (21,72) € Davt = Dam” | @2 = ho},
variational principle of the filtration problem. Since the trac- Rw” :={z = (21, 73) € Davt — Dam” |z < hy} .
tion method is based on rigorous mathematical analysis, itWe then define.® ¢ H' (Da) by
robust and stable. In Section 6, some of level-set approaches
are surveyed. In Section 7, a numerical example is given. hy onBi,
ul(z) = xy  in Dt
I1. DEFINITION OF THE FILTRATION PROBLEM . 9
ho in Tum”.

In this section we briefly explain the definition of the
two-dimensional filtration (or dam) problem using the nota{ln Dav’, «° is defined in an appropriate way.)
tion of [16]. We assume th&@®m is a Lipschitz domain in

IR2. We also assume that the bounda(a) consists of Co C_Q‘
three parts: By, the impervious partB,, the part contact D 1
with air; andB; = B U B2 , the part contact with the water Tam
reservoirsk; and R,. We assume that the level of the water D2
reservoirs denoted by, andh, (h1 > hs) are different and C\ Da?
there exists a steady water flow insiev. We denote? as Dat® D‘4M0
the portion of water iavm which not a priori known. The
boundaryof consists of four parts: Figure 2:av? (5 = 0, 1, 2).
I' =B (the impervious pajt
'y C Dam (the free boundaiy Then, thefiltration problem is to find the flow region
Tl — B! (the part in contact with Q C Dam and the piezometric function (velocity potential)

. defined o2 which satisfies the boundary value problem
water reservoiR;, i = 1,2)

ngréul—% Au=0 mQ,
'y C By (the part in contact with ajr ? =0 onTy,
174
2 . TR2 0

. Letr = R bg acurve. Letr : IR* — IR be th.e canon- u=u" and —_p onTy, (1)
ical projection defined byt ((x1,x2)) := x;1. In this paper, ov
we say that" is agraph in the direction ofcs, if (|r) (1) u=u’ onl’s,
is connected for alk; € «(T"). For the configuration of the 0 q ou <0 I
Lipschitz domainDavt, we assume the following properties u=u-an v — onts,
in this paper: wherev := (11, 15) is the unit outer normal vector @fQ).

(1) There are two reservoirs of water (one of them may bilote that on the free boundary, both Dirichlet's and Neu-
empty) separated by the dam. We assume without lo§3ann’s conditions are imposed. In other words, the free
of generality that the water level of the left-hand sidd®oundary is determined so that the both conditions are sat-

reservoir is higher than that of the other. isfied at once. The conditiof < 0 is imposed off'y. The
_ _ _ physical meaning of this condition is that water flow comes
(2) Eachreservoir contacts the impervious base. from inside to outside ofi,. This condition is natural and is

important for the uniqueness of the exact solution.

In the case that the dam is a rectangle, Baiocchi [5] trans-
?ormed the problem to a variational inequality. Later, Alt
[1] and Brezis-Kinderlehrer-Stampacchia [9] gave different
approaches which can treat general situations, and proved

The problem is to find the flow regidn and the velocity the existence of a solution of the filtration problem. The
potential function. of the flow. To define the boundary value uniqueness of the solution was proved by Alt-Gilardi [3] and
of u we introduce the following subsetsBiiv. Let(, bethe Carrillo-Chipot [11]. Note that the above mentioned results
point where the surface of the left reservoir contég®ar).  are obtained using level-set methods.

(3) By C 9(Dum) (impervious part) andB; U B; C
d(Dam) (air and water parts) are continuous, piecewis
C? curves, both are graphs in the directionzef and
B> U B3 lies aboveB;.
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I1l. A VARIATIONAL PRINCIPLE OF THEFILTRATION SinceA(?) C B(Q2), we haveJ () > 0.
PROBLEM From the Dirichlet's principle we know that the value

For both mathematical analysis and numerical computéL-(Q) andb((2) are attained by the harmonic functiong

tion, it would be nice if we have a variational principle of thedNdwa (that is,a(Q) = Do(ug) andb(€2) = Da(ug)),
o . . h e espectively, which satisfy the boundary conditions
filtration problem. In this section, we explain a variational

rinciple intr in [16]. The i is very simple. L
principle introduced in [16] e idea is very simple. Let {ugzuooanquum,

Q C Dam be a candidate of the exact solution of the filtration o 5
G <0onTly, %2 =0o0nTy,

problem (that is, the true flow region). Leg, wo € H(9)
be a two harmonic functions with

2)

0
wo = u° onT3 UT,, %ZOOHIHUFQ. 3)
8 174
ugzuo, ﬂ:O onl's. . L L . .
v We have the following variational principle for the filtration

We suppose thatq, wq satisfy the boundary conditions of problem:

(1) onT'; UT3 U Ty, If  is the exact solutionyo must be

equal towq. If © is not the exact solution, the “difference . .

betweernug andwg” should represent the distance betweeﬁhe.functlonalJI + Ap - IR. Moreqver, an adm|33|b!e do-

0 and the exact solution in some way. Although, one ma{ﬂa'”_Q € Ap '|s a solution of the filtration problem if and

take any norm to measure the “difference betwegnand only if J(©2) = inf4,, J = 0.

wg”, we measure the difference in the following manner.
At first, we define the subset§(2), B(Q2) c H(Q) by

Theorem 2 ([16, Theorem 2.6]) We haviaf 4,, J = 0 for

IV. THE HADAMARD VARIATIONS OF a(2) AND b(2)

. By Theorem 2, the filtration problem may be solved (in
AQ) = {v e K (@) [v=u’ onlz UT5 Uy }, particular, numerically) by an optimization process. In an
B(Q):={ve H'(Q)[v=1u" on T3UTl,}, optimization process, the boundary would be modified grad-
ually and, therefore, it is very important to know ha£2)
andb(Q2) would vary under perturbation of the domain (or the
boundary). Such variations with respect to domain perturba-
tion are called theHadamard variations. In this section

whereC* () is defined by

K(Q):={ve H(Q)|v=00nT; Uy UTs,

v >00nTy}, we give the first variations af(Q2) andb(£2) with respect to
K*(Q) == {ve H(Q) | (Vu,Vx) <0, domain perturbation obtained in [17]. In the next section, we
vx € K(Q)}. present an iterative scheme using the obtained first variations.

Suppose that we ha¥e € Ap and try to modify it. Let
Note that for a harmonic functiop € C%(Q) N C2(Q), x  a vector fieldS € W (Tu; IR?) is given. We consider
belongs taC* if and only if 9x/0n < 0 onT'4 in the sense the ordinary equation
of distribution. Let a sufficiently large positive numbkf,
be taken and fixed. Let ald0, denote the Dirichlet integral %(t) =S(c(t)), t>0
t ) - )

on: X
Da(w) = [ [Volde ((0) =z, €D
Q

Then, for eachx € Dam the solutione(t) forms an integral
Definition 1 Under the setting defined so far, a Sub€eC  cyrve. Then7;(z) := c(t) satisfies the following:

D is calledadmissible if 2 satisfies the following condi-

tions: (1) © is a Lipschitz domain.(2) 0 D By U Bs. o To(z) =, Vo € Tam.

(3) 0Q — By U B3 is aC%! curve and is a monotone de-

creasing graph in the direction,. (4) A(Q) # 0 2 and ¢ 7, is adiffeomorphism oDau for sufficiently small: >
inf,e a0) Da(v) < Mo. We denote bydp the set of all 0.

admissible domains. _ _
e 7; is smooth with respect to

The functionak(2), b(2), J(2) : Ap — IR are defined

by e 7; has the Taylor expansion

a(Q) := inf Dqg(v), b(Q):= inf Dq(v), Te(x) =z +1S(x) + oft).
vEA(Q) vEB(Q)
J(2) = a(2) — b(Q). We use thisy; as perturbations dfam.
2If the boundan is very “wild”, A(£2) could be empty. So we need Now, letQ2 € Ap be a candidate of the solution of the
to assumed(Q) # 0. filtration problem. Letun € A(Q2) C H'(Q) is the harmonic
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function which satisfies(Q2) = Dq(uq), that is,

Aug =0 in Q,
%ﬂ =0 onI'y,
Y 4)
uQ = U onl'y UT'3UTy,
% <0 only.
ov

To consider a perturbation 61, only the free boundary/,
andI'y would be moved. Hence, we may assume that

suppSNIN C 'y UTy. (5)
The weak form ofuq, is

(Vug, Vu)g =0, Yv e V5(Q),

UQZUO onl', UT'3 UTy,

where(-, -)q is the inner product of.?(Q2) and
Vo() :={ve H'(Q) |v=0 onTyUT3UT4}.

For a sufficiently smalk > 0, let Q; := T;(2) and
suppose tha®), € Ap. Setl, := 9Q; N am andT =
0 N By. We also consider the harmonic function, such
thata(€;) := Dq, (ugq,) where

1
DQt(th) = 5 |qut|2 dx.
Q
The harmonic functiong,, satisfies the boundary value prob-
lem
AUQt =0 in Q,
8UQ
t=0 onll
31/ 1
ug, = u’ onTbuTsuUTY,
8UQ t
— <0 only.
ov — 4
Defining

Vo(u) :=={ve H' () |v=0 onTHUT3UT}},
the weak form forg, is

(Vug,,Vv)a, =0, Vv e Vo(Q),
ug, =u’ onTLUT3UTY.

Note that we have

0 € V() = o Tp € V(). (6)

To show the theorem below, (6) plays an important role. Let

(-, )yr,ur, denote the duality pair off ~'/2(Ty U T4) and

Theorem 3 ([17, Theorem 4.1]) Lef2? € Ap be an ad-
missible domain. Suppose that the perturbatibfx) =
x + tS(x) + o(t) satisfies that); := T:(Q) € Ap for all
sufficiently smalt > 0 and (5). Then, the first variation
da(Q) is written by

1 apa '\’
i ()

wherep := ug — x5 andédp := S- v is the normal component
of S.

Remark:(1) The functiorpg = uqg — x2 represents the water
pressure.

(2) If Ty is sufficiently smooth so thabug/dz1 and
Ouq/Oxo exist at almost all points of's in the classical
sense. Then, the first variation is written as an usual integral
overl's UTy:

2
0a(Q) = %/F . (1— (%’%) )5pds.
2Uly

Recall that©? € Ap and the harmonic functiong €
B(Q) ¢ H'(Q) is a solution of the boundary value problem
(3). It satisfies the following boundary problem

Awg =0 in Q,
wg = u° onI's UTy, @)
%LVQ =0 onl'y UTs.
Its weak form is
(Vwq,Vv)g =0, Yve Vi(Q),

wo = onT's Uy,

where

Vi(Q):={ve H(Q)|v=0 onI'3UTy}.

We now consider the harmonic functiam,, € B(£;)

which satisfies the boundary value problem

Awg, =0 inQ,
wg, = u’ onl3 UTY,
8;”3 =0 onTy UT.
The weak form forvg, is
(Vwgq,,Vv)a =0, Vv e Vi(Q),
wo, = u’ onT3U I‘Z,
with

Vi(u) :={ve H' () |v=0 onT3UT,}.

H'/?(TyUTy). Then the first variatioda(Q) can be defined The difficulty here comes from the fact that

as Q Q
0a(Q) ;= lim 7a( 1) —a ),
t—+0 t

where we can have the following theorem.

Issue 1, Volume 5, 2011
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In this section we present an iterative scheme based on
the Hadamard variation obtained in the previous section.
Suppose that we are trying to obtain the flow redibhy an
iterative scheme. Le(®) andT'{" c 9Q® bek-th guess
of the flow region and the free boundary, respectively. Since
the first variation of the functional : Ap — IR is

Opq ) 2
k)Y _ Qk
SJ(QW)) = <1 — <—8V )

Figure 3: The boundary poig may be “peeled off” by the _ Owex) 2 >
perturbation. Ds 1P )

Therefore, we need to impose an additional assumption @ intuitive iterative scheme is defined by
perturbation. If (8) holds for all sufficiently small > 0,

the perturbatior/; of I'y U I'y is said to satisfy theNPO FV(z):=1- (M)Q _ (8w9(k) )2,
condition. (The term “NPO” stands for “Non-Peeling-Off.") on s
Letb(€%) := Dq, (wq, ) where Fékﬂ) = {a: + eFV(z)v(x) ’ x € ng)} : (10)
Dq, (we,) = % Vwe, | da. for z € T{"), wheree is a positive dumping parameter and
o v(x) is the unit outer normal vector ate Fé’“). This scheme
Then, the first variationb(Q2) of b(Q2) is defined by (10) might be called ateepest descent methdtbwever, nu-
merical experiments show that this scheme does not work at
6b(Q) := lim b(%) — b(§Y) all even wherr is set very small. After a several iterations,
t=0+ t Pé’“) becomes very “jagged” and computation cannot be car-

ried out any more.
We next propose another iterative scheme which is de-
Theorem 4 ([17, Theorem 5.1]) Le® € .Ap be an admissi- fined in the following way. Let") € H'(Q(*) be the solu-
ble domain andug, € B(R) be such thab() = Dg(wg). tion of the boundary value problem:
_Su_ppose that the perturbatidi(z) = _Jr_tS(a:) +o(t) sat- AL — g in k)
isfies that?, := 7;(Q2) € Ap for all sufficiently smalk > 0 ’

and we have the following theorem.

and (5). Moreover, we assume that the NPO condition (8) 2 =0  onTsur{,
_hold_s. Then, the first variatiodb(2) of the functionab(£2) 92k (1)
is written by 9 0 only,
o2 (k) &
1/ (owa\> =FV onI'{".
o)== ( (& 2
(%) 2<(as) ,5,o> 7 o
T2 Then, the iteration is defined by

whered/ds is tangential derivative along, anddp := S-n (k+1) . )
is the normal component 6t Iy = {l - 2O (@) () ‘ z €Ty } :

Corollary 5 ([17, Corollary 5.2]) Suppose that all assump-The methoq is called theaction method and was pr_esented
tions of Theorem 3 and 4 hold. Then, the first variatior?y Azegami (see [4] [14] and the references therein) as a nu-
5.J(Q) of the functional/(Q) := a(Q) — b(Q) is written merical iterative scheme for optimal shape design. Numer-
ical experiments show that the traction method works very

i well for the filtration problem. Beginning from a suitably
5J(Q) = lim J(Q) — J(Q) defineq initial guess, the iteration converges smoothly to a
t—0-+ t numerical solution.
1 apa\? Owo \ 2 Inthe following, we p.oint out the tvvp significant natures
=3 <1 - <8—u> - (g) ;0 > (9) of the traction method. Firstly, the traction method decreases
r the value of7(2) in its iterative process. L& C Dam be an

admissible domain. Suppose that the perturbed dof2ais

Moreover,dJ () = 0 for any sufficiently smalip if and only defined by the traction method

if Q € Ap is the solution of the filtration problem.

V. THE TRACTION METHOD — AN ITERATIVE SCHEME FQ = {x B Tz(a:)l/(a:) ‘ re FQ} » 7>0,
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wherez(z) is a solution of the boundary value problem sim-  Inthe case that the dam is a rectangle, Baiocchi [5] trans-

ilar to (11). Lettingdp := —z andF'V := 9z/0nonT'y and formed the problem into a variational inequality, and show
op := FV := 0 elsewhere o2, we have the existence and uniqueness of the solution of the filtration
problem (see also [15]). Let > 0, h; > ho > 0 be positive
(FV,0p)y, = <%, (_Z)> constants. Letum := (0,a) x (0, k1) be a rectangle dam.
n Iy Let the functiony € H?°°(Tm) be defined by
0z 9
_<%’(_Z)>Q__/Q|vz| de oL (hy — x2)* + §-(he — 22)?,
and g($17x2) = 0<zo < hy

%(hl — .132)2, hy < x9 < hy
J(Q) =J(Q) + 7 (Q) + o(T)

=J(Q) + 7 (FV,p)r, + o(T)
3@ -7 [ [Vafde -+ ofr). K= {v & 1 (Pat) 20 2 Oin Pawt,

; v=gond(Dm)}

Let K C H'(Tum) be defined by

Therefore, we may expect o ) »
From the theory of variational inequalities (see [15]), there

J(Q,) < J(2) exists a unigue solutiow € K of the variational inequality

at each step of the traction method. This nature of the traction / V- V(o —w) > _/ (v —w), Vo € K.
method is already pointed out by Kaizu and Azegami [14] in UM — Joam ’
a different context. .

Secondly, numerical experiments suggest that the trateM: it is shown that the domaih:= {z € D : w > 0}
tion method seems to have a stabilizing and smoothing effelSt € desired flow region and:= w; — dw/dz; is the de-
of the free boundary. Although, the mechanism of this effecct'red velocity potential. Unfortunately, this beautiful theory

of the traction method is not understood completely at thid0Tks only for the cases that the both sides walls of the dam

point, we here give a partial explanation. Let théh guess is vertical. o )
ng) of the free boundary is i’ class ( < a < 1). Then Later, Alt [1] and Brezis-Kinderlehrer-Stampacchia [9]

it follows from the regularity theory of linear elliptic PDEs gave a different ap_proach which can treat gengral §|tuat|ons,
and proved the existence of a solution of the filtration prob-

that
lem. The uniqueness of the solution was proved by Alt-
Uk, Pok)  Wok € Clﬁa(g(k) U rék’)) and Gilardi [3] and Carrillo-Chipot[11]. In this approach, the fil-
5 2 g 2 tration problem is formulated to find a pdj, ) as is stated
FV := 1—( %Q(k) > - ( ug“’”) e o). in the following. Define the functiop? by
174 S
Since the Neumann-Dirichlet map . hi—w2 ONBj, =12
0 on Bs.
C%*(Iy) > FV = 0= — 2B e 1 (Ty)
? - ? Lete := (0,1).

is used in the iterative procedure of the traction method, the ) . 1
k+1) i s Al . . Problem 6 Find a pair (p,v), wherep € H'(Dam), v €

updatedl’s is in C~ class again. Hence, the tractlonLoo(DW) such that

method at least preserves the smoothness of the free bound-

k) . « ”
ary. Ifl“g >(|:flg))c.jated b}/ the “steepest desc'en.d method” (10), 0<~y<1, ~=1on{p>0}
howeverl’; is only in C%<. Probably, this is a reason of
the unstable behaviour of the scheme (10). p = p° on By U B3 such that
VI. LEVEL-SET APPROACHES / V(- (Vp+re) <0, Wee H (Tum)
DAM

In this section, we survey level-set approaches briefly.
There are two types of level-set approaches; one of them fgith ¢ > 0 on B, and¢ = 0 on Bs.
formulates the problem into a variational inequality when the
damum is a rectangle. In the other level-set approach, the As stated above, it has been proved that there exists a
filtration problem is reformulated into a problem to find aunique solution(p, ). Also, it is shown thaf{p > 0} is
pair (p, ), wherep is the pressure of the flow andis the the desired flow regiony is the characteristic function of the
characteristic function of the flow region. In this section weeegion{p > 0}: v = x{p>0}, andu := p+x, is the velocity
explain them briefly. potential of flow insideDav (see [13] for detail).
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As long as the authors know, any level-set approaches for
the filtration problem so far are modifications of one of the " sl ] —
above mentioned theorems. Numerical analysis for the filtra-
tion problem as a variational inequality was started by Baioc-
chi and his school. For their works and the development dur- 5
ing 1970s and 80s on this subject, see, for example, [7] and
[6] and references therein. The first numerical scheme based !
on the formulation stated as Problem 6 is given by Alt him-
self [2]. For other numerical schemes based on Problem 6,
see, for example, [10], [8]. It seems that numerical schemes
based on the formulation of Problem 6 have not been con-
sidered thoroughly. Further researches, therefore, are desired 8
and expected.

02 o 05 0B 1 L W o1 18

VII. AN UMERICAL EXAMPLE . . . L
Figure 5: The numerical solution of the variational

In this section, we give a numerical example which show inequality.
the effectiveness of our combined approach. Let positive
numbersh; > hs > 0, a > 0 be given. AsDwt we take
a rectangléa := (0, hq) x (0,a) (see Figure 4). 5

' ‘mma}‘f
X2 3
hl — 2%
F4 15
Iy Dam
1
I hg
05
I3
UC U‘Z ‘4 Il‘b U‘B ‘1 I‘Z 1‘4 1‘6 18
X
I a ! Figure 6: The initial guess made by the variational
Figure 4: A rectangle dam. inequality.

As is stated in the previous section, the filtration problem u
is reformulated as a variational inequalityZ¥w is rectan-
gle. The existence and the uniqueness, therefore, are proved g
nicely. First, we compute the solution of the variational in-
equality and use it to obtain the initial guess for iterative ¥
scheme. We set the values= 1.62, hy = 3.22, hy = 0.84.
In Figure 5 we show the numerical solution of the variational
inequality. Suppose that € H'(Taw) is the solution of the
variational inequality. Then the flow regidhis represented
as? = {& € Dam : w(z) > 0}. In Figure 5, therefore, we i
draw all triangle elements on which the finite element solu-
tion is positive. The union of such elements can be regarded &
as a numerical approximation of the flow region.

Then, we use the approximated region as an initial region
for the traction method (Figure 6).

After several steps, the traction method converges
smoothly, and we obtain a numerical solution.

0 L L L L L L L I
L L L e L I ]

Figure 7: The numerical solution of the traction method.
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