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Estimating Local Part Thickness in Midplane
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Abstract—Within the development of motor vehicles, crash
safety (e.g. occupant protection, pedestrian protection, low speed
damageability), is one of the most important attributes. In order
to be able to fulfill the increased requirements in the framework
of shorter cycle times and rising pressure to reduce costs, car
manufacturers keep intensifying the use of virtual development
tools such as those in the domain of Computer Aided Engineering
(CAE). For crash simulations, the explicit finite element method
(FEM) is applied. The accuracy of the simulation process is highly
dependent on the accuracy of the simulation model, including the
midplane mesh. One of the roughest approximations typically
made is the actual part thickness which, in reality, can vary
locally. However, almost always a constant thickness value is
defined throughout the entire part due to complexity reasons.
On the other hand, for precise fracture analysis within FEM,
the correct thickness consideration is one key enabler.
Thus, availability of per element thickness information, which
does not exist explicitly in the FEM model, can significantly
contribute to an improved crash simulation quality, especially
regarding fracture prediction. Even though the thickness is not
explicitly available from the FEM model, it can be inferred from
the original CAD geometric model through geometric calcula-
tions. This paper proposes and compares two thickness estimation
algorithms based on ray tracing and nearest neighbour 3D range
searches. A systematic quantitative analysis of the accuracy of
both algorithms is presented, as well as a thorough identification
of particular geometric arrangements under which their accuracy
can be compared. These results enable the identification of each
technique’s weaknesses and hint towards a new, integrated,
approach to the problem that linearly combines the estimates
produced by each algorithm.

Index Terms—Automotive crash simulations, structural mod-
elling, FEM mesh, thickness estimation, ray tracing

I. INTRODUCTION

Today, the automotive industry is challenged with a continu-
ous rising number of demands taking a strong influence on the
development process. The need for CO2 reduction and hence
the resulting need to reduce the vehicle weight as well as the
need to constantly improve occupant and pedestrian protection
makes it necessary to fully utilize the deployed materials as
efficiently as possible. In addition, product development has to
be economical with respect to development time and costs. For
crash simulations the explicit Finite Element Method (FEM)
has been applied for a long time. However, this process can
only be successful if the numerical methods are capable and
have a high confidence level.
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The properties of parts made of plastic materials are par-
ticularly difficult to predict due to the intrinsic complex be-
haviour of those materials. However, as plastics are pervasive
in many different automotive applications, including those
with very demanding specifications, it becomes vital to find
adequate methods for modelling and simulating those parts
under service conditions. Within the area of crash simulation
of thermoplastic parts, the actual local thicknesses play a sig-
nificant role for accurate deformation and fracture behaviour
prediction. Due to the fact that most thermoplastic parts used
in vehicles are injection moulded, the actual thickness can vary
significantly throughout a part. That thickness distribution is
not explicitly available within 2D crash meshes, which are
those mainly used in full car crash simulations, but it exists
implicitly in the full part geometry in CAD files (like IGES).
However, currently there are no automated and precise ways
to extract that local thickness distribution from the CAD files,
seriously limiting the precision – and thus, the potential benefit
– of crash simulations.

The main method currently employed for vehicle crash
simulation of thermoplastic parts is the Finite Element Method
(FEM). FEM is a numerical approach for calculating approx-
imate solutions of partial differential equations and integral
equations, enabling the numerical solution of many complex
problems in structural mechanics, and is the standard approach
for complex systems, particularly in the industry setting [1].
The main alternative methods to FEM are the Finite Differ-
ences Method and Finite Volume Method, the latter frequently
applied to fluid dynamic problems [2], such as strain on
structural elements with internal fluid pressure [3] or oscillator
storage tanks under hydrodynamic loads [4].

In the case of FEM, the entire geometric domain of the
part/system under study is discretized and modelled by a mesh
(whether a midplane two-dimensional mesh, or a full three-
dimensional surface or solid mesh), comprised of a large set
of finite elements (which can be of several simple geometries)
that intersect at points termed nodes [5], [6], [7]. Elements are
then assigned properties, which can be physical (e.g. thickness,
density, Young’s modulus, tensile strength), thermal, electric,
or others. This method was initially proposed in the 1950s
for airframe and structural analysis [8]. In 1973, Strang and
Fix [9] provided a rigorous mathematical foundation, and
enabled its expansion to many new applications. Aside from
its major application to structural mechanics, FEM has been
used in a large variety of fields, including acoustics [10],
fluid dynamics [11], medicine [12], and many others. FEM
can also be applied for the optimization of molding tools,
such as polymer injection molds [13]. The simulations can
be employed to quantify the thermomechanical environment
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Fig. 1. Different views of a car door geometry (grey) and the respective midplane mesh (green). Ideally the midplane mesh runs inside the part’s surface,
but in reality it might extend outside (dark green regions). The figure at the right presents, for each element of the midplane mesh, the estimated thickness
as a pseudo color map.

resulting on the mold from the injection molding process,
namely the pressure and temperature distributions on the
surface of the molding cavity. This combined with other
information readily available from process simulations, such
as optimal gate design and location, enables the optimization
of the entire molding process.

Although FEM is used for these various purposes, its main
application is undoubtedly the prediction of the mechanical
performance of parts under load. It has enabled significant
changes in product development over the past decades, both
in part design, for example to select the most appropriate
part thickness or even the most effective geometry for specific
applications [14], and also for tools and processes, for example
in determining the behavior of specific equipment components
during the use of the tool/machine [15].

An aspect that should be considered when discussing FEM
is concurrent engineering [16], [17], which in this context
pertains to performing several simultaneous activities that
are required for the analysis process, with a clear synergy
between them. The most typical application of concurrent
engineering in the case of polymer-based injection moulded
parts is integration between structural and flow simulations
[13]. This is due to the fact that the processing stage will affect
the mechanical behavior of the part in service, and thus, effects
resulting from the injection moulding process, such as warpage
and residual stresses, should be taken into consideration for the
structural simulation. Most often, different meshes are used for
both types of simulation; on the one hand, due to the fact that
flow simulation often employs full 3D meshes or application-
related mesh types (e.g. Fusion in the Moldflow software), but
on the other hand, also due to the fact that the flow simulation
may include features only present in the processing stage (such
as the runner system). In addition, commercial applications are
usually closed and do not allow seamless transfer of meshes
from one format to another, despite research efforts to that end
[13]. In any case, most often the local thickness is available
when performing flow simulations, but it is not considered
when performing the structural simulation.

This paper proposes and compares two techniques to esti-
mate local thicknesses from geometric models of automotive
thermoplastic parts and make these estimates available to
vehicle crash simulations based on finite element analysis.
The geometry of the parts is described as a closed surface
on a CAD file. FEM simulators use discrete approximate

representations of this geometry. These representations are
meshes of polygons that, ideally, run in the middle of the
closed surface – they are thus referred to as midplane meshes
(see figure 1).

Creating midplane meshes is not trivial. There are many
techniques and many application, both commercial and closed,
for mesh generation and mesh refinement, but there is still
ongoing research on finding automated (or semi-automated)
procedures that enable obtaining meshes of adequate quality
for simulation purposes [18], [19], [20].

Midplane meshes are generated from the CAD geometry
model, but they do not contain any information about the
part’s local thickness. However, this information is crucial
to allow accurate behaviour prediction in automotive crash
simulations. The problem addressed throughout this paper is
automatic estimation of thickness on a per-element basis, using
as inputs the CAD geometry model and the midplane mesh
itself. The proposed thickness estimation techniques, based on
ray tracing and nearest neighbour 3D range searches, allow
tagging each mesh element with its associated local thickness,
thus empowering accurate vehicle crash simulations. The
paper contribution is a systematic quantitative analysis of the
accuracy of both thickness estimation techniques, as well as a
thorough identification of particular geometric arrangements
under which the methods’ accuracy can be compromised.
These results will enable identifying each technique weak-
nesses and suggesting new approaches to the problem. The
next section presents the two thickness estimation algorithms,
the methodology to use throughout this systematic assessment
of their respective accuracies and an analysis of the obtained
results.

Section III proposes some improvements to these algorithms
that significantly increase their accuracy and the paper closes
with some concluding remarks and proposals for future work.

It is important to note that all information in this paper
about part thickness, including thickness calculation results,
are normalized so that the real part thickness takes the value
of 1. Thus, the thicknesses listed do not represent the real
thickness of the case-study parts.

II. THICKNESS ESTIMATION ALGORITHMS

Ideally, the midplane mesh runs inside the closed surface
and parallel to it (see figure 2). Intuitively, in such cases the
thickness at the centroid of each midplane mesh element is the
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sum of the distances between this centroid and some surface
point on each side of the element. With this definition in mind
two thickness estimation algorithms are proposed.

(a) Ray tracing. (b) Nearest neighbor.

Fig. 2. Algorithms for thickness estimation. Solid black lines represent the
part’s geometry, the red dashed line represents the midplane mesh and the
dashed circle represents the nearest neighbour search domain.

Ray Tracing (RT) - a ray is shot for each side of the
midplane mesh element, with origin on the element’s centroid
and direction equal to the element’s normal [21], [22]. Ideally
each of these rays intersects the part’s geometry; the sum of
both intersections’ distance is taken as an estimate of the part’s
local thickness.

Nearest Neighbor (NN) - this algorithm performs a search
on the surface geometry to locate which point is nearer to the
mid-plane mesh element centroid [23]. Figure 2(b) illustrates
the algorithm; the dashed circle represents the search domain,
which grows until the search algorithm returns a valid point on
the part’s surface. Actually, two such searches are performed
to locate two points, each on a different side of the mid plane
mesh element. The sum of the distances from the element’s
centroid and these two points is taken as an estimate of the
part’s local thickness.

Since the geometry models are themselves represented as
a mesh of polygons a kd-tree is used to accelerate each of
these algorithms [23]. For ray tracing the kd-tree is used for
space traversal, thus reducing the total number of evaluated
intersections, whereas for NN the kd-tree is used to perform
a range search and locate the nearest surface point.

In the ideal case, as depicted in figure 2, both algo-
rithms return exactly the same thickness estimate. Real parts,
however, include complex geometric configurations and/or
incorrect midplane mesh approximations. Correctly handling
such cases requires a systematic quantitative analysis of the
proposed algorithms behaviour and accuracy. Analysis of the
algorithms accuracy with real automotive parts is difficult
because the exact local thicknesses are unknown. In order to
enable such analysis seven simple synthetic parts, whose exact
thickness is known (normalized to 1 mm for all parts), were
modelled and used throughout the whole validation process.
For each part three different midplane meshes were supplied,
corresponding to different meshing granularities. The different
mesh granularities have been termed “coarse”, “medium” and
“fine”. The “medium” mesh edge length is 2.5 times the
edge length of the “fine” mesh, and the “coarse” mesh edge
length is 4 times the edge length of the “fine” mesh. This
allows studying the thickness estimate accuracy for different
representations. Figure 3 presents these synthetic parts, which
emphasize particular situations where the above described
algorithms are expected to fail. Parts 1 to 4 have the midplane

mesh either total or partially outside the part’s surface, parts
5 to 7 include ribs – thickness is not exactly defined at the
regions where the rib intersects the main surface.

(a) Part 1 (b) Part 2 (“medium”)

(c) Part 2 (”coarse”) (d) Part 3

(e) Part 4 (f) Part 5

(g) Part 6 (h) Part 7

Fig. 3. Synthetic parts used for quantitavive analysis of the thickness estimate
accuracy.

A. Metrics for quantitative analysis
Knowledge of the exact thickness of the synthetic parts

allows for a quantitative analysis of the thickness estimation
process. This analysis requires selecting metrics that can
be used as objective functions. Two such metrics are used
throughout this paper: arithmetic mean and the root mean
square error (RMSE). The objective function is RMSE, which
must be minimized.

Arithmetic Mean (AM) - since the actual thickness is a
constant (and equal to 1mm) across the whole surface for all
the synthetic parts, the arithmetic mean T̄ , calculated as the
average of the estimated thickness, T̃i, across all N elements
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Ray tracing Nearest Neighbor
Part nbr. T̄ RMSE T̄ RMSE

fine 0.000 1.000 0.000 1.000
1 medium 0.000 1.000 0.000 1.000

coarse 0.000 1.000 0.000 1.000
fine 1.000 0.001 0.883 0.169

2 medium 0.999 0.001 0.999 0.001
coarse 0.667 0.577 1.040 0.070

fine 0.942 0.241 0.911 0.204
3 medium 0.969 0.174 1.029 0.294

coarse 1.000 0.000 0.874 0.333
fine 0.857 0.378 1.194 0.865

4 medium 0.833 0.408 1.287 0.883
coarse 0.857 0.378 1.246 0.651

fine 1.833 3.062 0.895 0.162
5 medium 1.000 0.000 0.999 0.000

coarse 1.000 0.000 0.999 0.000
fine 2.250 4.330 0.912 0.141

6 medium 1.000 0.000 1.000 0.000
coarse 1.000 0.000 1.000 0.000

fine 1.097 0.312 0.887 0.179
7 medium 1.134 0.368 1.019 0.053

coarse 1.000 0.000 1.000 0.000

TABLE I
RESULTS FOR THE THICKNESS ESTIMATION ALGORITHMS (NORMALIZED).

of the mid-plane mesh (see equation 1), gives a fast hint of
whether or not the estimation process is converging towards
the correct value. It is a global metric, however, thus it does
not capture whether there are local errors on the estimates that
can be smoothed away by the averaging process. Furthermore,
it would not convey useful information if the real thickness
varied from element to element.

T̄ =
1
N

N

∑
i=1

T̃i (1)

Root Mean Square Error (RMSE) - RMSE takes the
square of the individual differences, also called residuals,
between the estimated and the real thickness at each element
of the mid-plane mesh and aggregates them onto a single
metric that has predictive power and is perceived as a good
measure of accuracy [24] (equation 2). The lower the RMSE
the better the thickness estimates produced by the associated
algorithm. RMSE heavily weights outliers (i.e., particularly
bad local estimates) due to the squaring of the residuals,
whereas small residuals are attributed very small weights; it
is felt, however, that for Finite Element Analysis of structural
properties outliers can strongly affect the simulation result,
thus this is a desirable property.

RMSE =

√
∑

N
i=1(T̃i −Ti)2

N
(2)

B. Results Analysis

Results for the 7 synthetic parts, with 3 different mid-plane
mesh resolutions and for two thickness estimation algorithms,
are presented in table I.

In those cases where the midplane mesh runs outside the
part’s surface (parts 1 to 4) both algorithms fail to find valid

points on both sides of the mesh and, consequently, fail to
estimate the thickness. Figures 4(a) and 4(b) illustrate this for
Part 3.

The hole prevents the algorithms from finding valid points
on the part’s surface. The particular values presented at table I
for parts 1 to 4 result from the fact that an estimate T̃i equal to
zero was generated for these cases; this is particularly evident
for Part 1 where estimates could not be generated for any
element since all of them are outside the part, thus resulting
on T̄ = 0.0. The fact that the midplane mesh is outside the
part’s surface means that it is not a good representation of the
original part; these situations will be handled explicitly (see
section III).

(a) Part 3 - Ray tracing. (b) Part 3 - Nearest neighbor.

(c) Part 5 - Ray tracing. (d) Part 5 - Nearest neighbor.

Fig. 4. Thickness estimation within holes and near ribs - pseudo color maps
(normalized).

Parts 5 to 7 illustrate situations where ribs are present. It is
evident that the ray tracing approach fails when the midplane
mesh element’s centroid is aligned with the rib - rays, which
are shot along the element’s normal, will run inside the part,
finding an intersection at distant points of the part’s surface
and overestimating thickness (figure 5(a)). This is particularly
evident for the finer granularity meshes. The NN algorithm
does not suffer from this problem. It will still be able to find
nearest points near the rib’s junction with the part’s surface,
thus avoiding large thickness estimation errors (figure 5(b)).
Figures 4(c) and 4(d) clearly show that the NN algorithm
outperforms RT at these particular regions.

(a) Ray tracing. (b) Nearest neighbor.

Fig. 5. Thickness estimation near ribs. Black lines represent the part’s
geometry, whereas the red dashed line represents the midplane mesh.
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Table I also shows a somehow surprising result: the error
of the NN algorithm tends to increase as the mesh granularity
becomes thinner. Figures 4(b) and 4(d) illustrate why. When
searching for the nearest point in the part’s surface, the
elements that are close to the mesh boundaries find the part’s
lateral surface as its closest neighbor (see figure 6). The
thickness estimate is thus smoothed and will diverge from
its actual value, suggesting a round edge. A solution for this
divergence, which occurs with most parts, is discussed in
section III.

Fig. 6. Divergence of the NN algorithm close to the midplane mesh
boundaries.

Summarizing, both algorithms produce wrong thickness
estimates when the mid-plane mesh is a very inaccurate
approximation of the part’s geometry and runs outside it - a
technique will have to be developed to handle these cases ex-
plicitly. Additionally, the ray tracing algorithm overestimates
thickness in the presence of ribs, whereas the nearest neighbor
algorithm underestimates thickness near the midplane mesh
boundaries.

III. ESTIMATION IMPROVEMENT

A. Inaccurate midplane meshes

The coarser the granularity of the mid-plane mesh the worst
its accuracy as an approximation of the part’s geometry. Often,
this results on the mid-plane mesh running outside the part’s
surface, which leads to thickness estimation errors, as shown
in the previous section. Two different cases occur with this
inaccurate representation of the part’s geometry: either the
mesh is outside the surface but it still encompasses the part’s
geometry (parts 1 and 2, figures 3(a) and 3(c)), or the mesh
runs outside the surface but this does not correspond to any
region of the part’s geometry (parts 3 and 4, figures 3(d) and
3(e)).

Detecting whether an element’s centroid is contained within
the part’s volume is a generalization of the well-known point in
polygon problem and can be solved by resorting to ray tracing:
if a ray is shot from a given point along any direction, that
point is inside the closed surface if it intersects the surface an
odd number of times, else it is outside the closed surface [25].
Thus, for each centroid, one ray is shot along the element’s
normal direction for each side of the element. If each of these
rays intersects the surface an odd number of times, then the
centroid is inside the part. If both rays intersect the surface
an even number of times, then the centroid is outside the
surface. In this latter case, and if at least one of the rays
intersects the surface more than zero times, the side of the
centroid whose ray reported the closest intersection is selected
as the one closest to the surface and thickness is estimated as

the difference between the two closest intersections of that
ray. This process is depicted in figure 7. The part’s surface
is represented by the solid black lines, the mid-plane mesh
is depicted by the dashed red line and the rays correspond
to the blue arrows. The brackets represent the estimated
thicknesses by subtracting the distances found by the two
closest intersections along the same ray.

Fig. 7. Detection of whether the midplane mesh is outside the part’s surface.

Parts 1 and 2 illustrate two cases where the mid-plane
mesh is outside the part’s surface but still encompasses it.
By detecting whether each element’s centroid is outside the
part the exact thickness is found and a RMSE equal to zero
is obtained (figure 8).

(a) Part 1. (b) Part 2.

Fig. 8. Parts 1 and 2 with RT corrected thickness estimation - pseudo color.

The effectiveness of the RT corrected thickness estimation is
also shown with a real part representing a B-pillar trim where
a significant number of elements of the midplane elements are
outside the part’s surface, as illustrated in figure 9. Figure 10
shows thickness estimations obtained with RT and NN (left
and center) and with the detection of elements outside the
part’s surface (right).

However, for some elements of the mid-plane mesh no
intersections are found on either side of the element, as
illustrated in the bottom part of figure 7. This happens within
the hole of part 3 and on part 4 on the region of the mesh
that extends further than the part’s surface. Such elements
are tagged as ”Incorrect” and can later be post-processed
(either manually or through other automated procedures under
development).

B. Nearest neighbor divergence

In order to limit the divergence occurring near the midplane
mesh boundaries with the NN algorithm, a limitation has
been imposed on the maximum acceptable angle between the
element’s normal and the direction defined by the element’s
centroid and the surface nearest point. By limiting this angle it

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 5, 2011 73

user
Rectangle



6

(a) Ray Tracing. (b) Nearest Neighbor. (c) RT corrected.

Fig. 10. Thickness estimation for the door pillar - pseudo color (normalized).

Fig. 9. Door pillar geometry and mesh: green and yellow correspond to
midplane elements outside the part’s geometry.

is expected that the part’s lateral surface is rejected as a nearest
neighbor, thus forcing the algorithm to expand its search onto
regions of the surface that are farther away from the mid-plane
element (Figure 11).

Fig. 11. Limiting acceptable angle for NN: the gray triangle represents the
unacceptable angle domain, dashed arrows represent rejected nearest point
directions, solid arrows represent accepted directions.

This technique requires some precaution. Some real part’s
geometries are modeled with polygons that have an area orders
of magnitude larger than the respective midplane elements
area. If the limitation of the angle is too strict, then some
midplane elements could reject the surface polygon, missing

the correct nearest neighbor and overestimating local thick-
ness. In the presence of ribs the angle rejection technique
might also reject the correct nearest neighbor, resulting in
overestimating thickness. The occurrence of these two cases
depends on the geometric configuration of the part’s surface
and on the threshold applied to the angle. To study the impact
of this technique different angle thresholds have been tested:
80, 65 and 45 degrees.

Part 2 Part 5 Part 6 Part 7
RT 0.0008 3.0619 4.3301 0.3118
NN (no limit) 0.1688 0.1618 0.1414 0.1792
NN (80o) 0.0860 0.0741 0.0704 0.0848
NN (65o) 0.0273 0.0461 0.0447 0.0577
NN (45o) 0.0065 0.0118 0.0163 0.0493

TABLE II
RMSE RESULTS FOR NN ANGLE LIMITATION WITH FINE MIDPLANE

MESHES.

Table II presents the RMSE obtained for 4 different parts
and respective fine grained midplane meshes. For these syn-
thetic parts a threshold of 45o produces the smaller RMSE.
However, for complex real parts such a large threshold results
in many rejections and, consequently, in many local errors
(see figure 12, where significantly wrong thickness estimates
are highlighted in red). A threshold of 80o does not induce
such errors and still its impact on the RMSE is significant
more than halving it.

IV. CONCLUSION
This paper presents and analyzes two techniques, based

on ray tracing (RT) and 3D nearest neighbor range search
(NN) algorithms, to estimate local thicknesses from geometric
models of automotive parts. These estimates are fundamental
to allow accurate simulation of automotive part performance
(e.g. deformation and fracture behavior) in high dynamic
crash loadings by using finite element analysis (FEM). Results
obtained using each of the algorithms individually (table I)
allowed the identification of three different situations that
lead to poor thickness estimation as measured by Root Mean
Squared Error (RMSE): the midplane mesh runs outside the
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(a) No angle threshold.

(b) 80o threshold.

(c) 65o threshold.

(d) 45o threshold.

Fig. 12. Wrong thickness estimates (normalized) induced by limiting the
maximum acceptable NN angle (highlighted in red).

part’s surface preventing the proposed algorithms to find valid
points on the part’s surface, the NN algorithm diverges on
the midplane boundaries and the RT algorithm fails to find
accurate thicknesses on ribs.

The first problem was addressed by using ray tracing
to detect whether an element’s centroid is outside the
surface. In such cases the difference between the two closest
intersections detected on the same side of the element is used
as thickness estimation. There are still some elements where
no intersections are found on either side: these are tagged as
as ”Incorrect” for manual post-processing. The divergence
with the NN algorithm near the midplane mesh boundaries
was minimized by limiting the maximum angle allowed
between the element’s normal and the direction defined by
the element’s centroid and the nearest point on the part’s
surface. By requiring that this angle is less than a specific
value RMSE was significantly reduced while avoiding other
geometric errors. The ribs inaccuracies associated with the
RT algorithm were not addressed explicitly since these are
completely avoided by the NN algorithm.

The above results suggest that:
• NN fails on the midplane mesh boundaries but RT pro-

vides good estimates at these locations. The heuristic of
limiting the angle reduces RMSE, but does not allow

estimates as good as RT; this is corroborated by the results
achieved with part 2 (table II);

• RT fails on ribs, but NN provides good estimates at these
locations.

Both algorithms complement each other: if each algorithm’s
best estimate can be selected for each element of the midplane
mesh then RMSE is reduced. Figure 13 illustrates this ap-
proach for part 5: for each midplane element the estimate that
minimizes the difference to the correct thickness was manually
selected from the RT and NN with angle limitation algorithms.
The final result is a very good overall estimate of the part’s
thickness, with an average mean of 1.0091 and RMSE equal
to 0.0325. Small errors are visible only on the mid plane mesh
boundaries on the rib joint with the part’s main body, since
these are the locations where both algorithms induce some
inaccuracy.

Fig. 13. Best estimate from either RT or NN manually selected for each
midplane mesh element - pseudo color.

A. Future work

The above conclusion suggests that if a criterion can be
found that allows automatic selection of either the RT or the
NN estimate for each element, then RMSE can be significantly
reduced and the whole results would be much more reliable
from the FEM simulation process point of view. Such a
criterion is not evident however, due to the complexity of
real world parts. Real geometries and midplane meshes have
lots of details and particular configurations that make it very
difficult to establish which is the best estimate - particularly,
the real local thicknesses are not known, since this is exactly
the quantity that is being measured. Analysis of the local
geometries in order to identify ribs and/or midplane mesh
boundaries may also reveal too complex to be performed
accurately.

A promising approach is to estimate thicknesses using both
algorithms and then assign each estimate a given confidence
weight given their relative variations within a given neighbor-
hood. Identifying neighborhoods requires representing connec-
tivity among midplane mesh elements; with this information
some particular geometric arrangements, such as elements
on the boundaries of the midplane mesh, can be identified,
which will further facilitate the estimation of confidence
weights. The final result would be a linear combination of
both thickness estimates, weighted by the confidence values.
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Future work will entail studying such alternative criteria,
which will allow integrating the two algorithms presented
throughout this paper. Once that criterion is established, the
developed approach will be validated in two stages. First, it
will be used to compare simulation results performed with the
standard industry method of assigning the best-estimate overall
thickness to the part, and those obtained by considering the
local thickness distribution (for each individual midplane mesh
element). Afterwards, results from from simulations performed
with best-estimate overall part thickness (traditional approach)
will be compared to those from simulations taking into account
the calculated local thickness (proposed approach), to verify
which predicts most accurately the experimental tests.

ACKNOWLEDGMENT

We acknowledge the Foundation for Science and Technol-
ogy, Lisbon, Portugal, through the 3o Quadro Comunitário de
Apoio and also the POCTI and FEDER programs.

REFERENCES

[1] T.Y. Yang, Finite Element Structural Analysis, Prentice-Hall (Englewood
Cliffs, N.J.), ISBN 0133171167, 1986

[2] R. Leithner, H. Zindler, A. Hauschke, Optimization of the Finite Volume
Method Source Code by using Polymorphism, International Journal of
Mathematics and Computers in Simulation, 1(3), pp. 228, ISSN: 1998-
0159, 2007

[3] S. Sabbagh-Yazdi, M. Alkhamis, M. Esmaili. N. Mastorakis, Finite
Volume Analysis of Two-Dimensional Strain in a Thick Pipe with
Internal Fluid Pressure, International Journal of Mathematical Models
and Methods in Applied Sciences, 2(2), pp. 162, ISSN: 1998-0140,
2008

[4] S. Sabbagh-Yazdi, N. Mastorakis, M. Esmaili, Explicit 2D Matrix Free
Galerkin Finite Volume Solution of Plane Strain Structural problems on
Triangular Meshes, International Journal of Mathematics and Computers
in Simulation, 1(2), pp. 1, ISSN: 1998-0159, 2008

[5] P. Frey and P. George, Mesh Generation: Application to Finite Elements,
Hermes Science, ISBN 978-1903398005, 2000

[6] H. Edelsbrunner, Geometry and Topology for Mesh Generation, Cam-
bridge University Press (Cambridge, UK), 2001

[7] J. Thompson and Z. Warsi and C. Mastin, Numerical Grid Generation:
Foundations and Applications, North Holland, Elsevier, 1985

[8] Jr. William Weaver and J. M. Gere, Matrix Analysis Of Framed
Structures, Springer-Verlag New York, 1966

[9] G. Strang and G. Fix, An Analysis of The Finite Element Method,
Prentice Hall (Englewood Cliffs, N.J.), 1973

[10] M. Brinkmeier and U. Nackenhorst and S. Petersen and O. von Estorff,
A numerical model for the simulation of tire rolling noise, Journal of
Sound and Vibration, 309(1), pp. 20–39, 2008

[11] R. Lohner, Applied Computational FLuis Dynamics Techniques: An
Introduction Based on Finite Element Methods, John Wiley & Sons,
2nd edition, ISBN: 978-0-470-51907-3, 2008

[12] A. Hawkins and J. T. Oden, Toward a predictive model of tumor
growth, Institute for Computational Engineering and Sciences (ICES),
The University of Texas at Austin, 2008

[13] R. Simões, A. Brito, A. Cunha, Integration of Flow Simulation and Solid
Modelling Software for Aluminium Mould Optimization, O Molde, 69,
pp. 26, 2006

[14] V. Laemlaksakul, Design of Laminated Bamboo Furniture using Finite
Element Method, International Journal of Mathematics and Computers
in Simulation, 2(3), pp. 274, ISSN: 1998-0159, 2008

[15] M. ILiescu, E. Nutu, B. Comanescu, Applied Finite Element Method
Simulation in 2D Printing, International Journal of Mathematics and
Computers in Simulation, 2(4), pp. 305, ISSN: 1998-0159, 2008

[16] Concurrent Engineering: Automation, Tools, and Techniques, Andrew
Kusiak (ed), Wiley-Interscience, ISBN: 978-0-471-55492-9, 1992

[17] J. R. Hartley, S.Okamoto, Concurrent Engineering: Shortening Lead
Times, Raising Quality, and Lowering Costs, 1998
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