
 

 

  

Abstract—This paper proposes a semi-nonparametric (SNP) 
methodology for computing portfolio value-at-risk (VaR) that is 
more accurate than both the traditional Gaussian-assumption-based 
methods implemented in the software packages used by risk analysts 
(RiskMetrics), and alternative heavy-tailed distributions that seem to 
be very rigid to incorporate jumps and asymmetries in the 
distribution tails (e.g. the Student’s t).  The outperformance of the 
SNP distributions lies in the fact that Edgeworth and Gram-Charlier 
series represent a valid asymptotic approximation of any “regular” 
probability density function. In fact these expansions involve general 
and flexible parametric representations capable of featuring the 
salient empirical regularities of financial data. Furthermore these 
distributions can be extended to a multivariate context and may be 
estimated in several steps and thus we propose to estimate portfolio 
VaR in three steps: Firstly, estimating the conditional variance and 
covariance matrix of the portfolio consistently with the multivariate 
SNP distribution; Secondly, estimating the univariate distribution of 
the portfolio constrained to the portfolio variance obtained from the 
previous step; Thirdly, computing the corresponding quantile of the 
portfolio distribution by implementing straightforward recursive 
algorithms. We estimate the VaRs obtained with such methodology 
for different bivariate portfolios of stock indices and interests rates 
finding a clear underestimation (overestimation) of VaR measures 
obtained from the traditional Gaussian- (Student’s t-) based methods 
compared to our SNP approach. 
 
Keywords— Edgeworth and Gram-Charlier series, GARCH 

models, multivariate densities, semi-nonparametric distributions, 
Value-at-Risk.  

I. INTRODUCTION 

ecent stock market crashes have shown that the traditional 
methods have failed in providing accurate value-at-risk 
(VaR hereafter) measures.  In fact most risk management 

software packages (e.g. RiskMetrics)  implement VaR 
methodologies assuming a Gaussian distribution of returns 
that, although simplifies the VaR calculation (only requiring 
the estimation of the portfolio variance and covariance matrix) 
is not reliable. For this reason different distributions have been 
proposed to account for the heavy tails and asymmetries 
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featured by high frequency data, the Student’s t being the most 
widespread – see [1] for a recent application. Nevertheless the 
parametric approaches may also be insufficient to accurately 
capture risk since most of them depend on a few parameters to 
account for the shape of the true distribution. 

On the other hand, the semi-nonparametric (SNP 
hereafter) methods overcome all these shortcomings through a 
flexible specification admitting as many parameters as 
necessary to approximate the underlying (true) distribution of 
asset returns series. Particularly it is well-known that any 
frequency distribution can be rewritten in terms of an infinite 
expansion of Edgeworth and Gram-Charlier series – see [2] for 
the early applications of these series in econometrics. The 
empirical applications, however, require the truncation of the 
expansions, which may affect the positiveness of the density 
but not the quality of the approximation and the risk measures 
based on it ([3] introduced a simple transformation to solve 
this problem and [4] analyzed the resulting “positive” SNP in 
detail).  

Furthermore the Gram-Charlier family of densities has 
been generalized to a multivariate framework and applied for 
financial purposes in [5], [6] and [7]. These articles define a 
whole family of multivariate SNP distributions that not only 
preserve the nice properties of their univariate counterparts 
(i.e. generality, flexibility and simplicity) but also satisfy other 
interesting properties: (i) Their marginal (univariate) 
distributions behave within the same SNP family; (ii) they are 
invariant from linear transformations; (iii) they can be 
consistently estimated in two and three steps (i.e. conditional 
means and variances can be estimated previously and 
independently from the rest of the distribution parameters); 
(iv) their statistical properties, including their cumulative 
distribution function (cdf), and thus their quantiles, can be 
easily derived.  

All these properties allow establishing a very 
straightforward procedure to calculate portfolio VaR for SNP 
distributions that may me applied even for large portfolios. 
Such a procedure may be divided into three steps. Firstly, the 
time-varying conditional variance and covariance matrix of the 
portfolio is estimated consistently with the SNP hypothesis. It 
must be noted that for large portfolios this step can be 
simplified by estimating portfolio means and variances in the 
marginal univariate distributions – in this case consistency is 
achieved even if a Gaussian distribution is assumed instead of 
a SNP density since the log-likelihood decomposition 
proposed in [8] is feasible – and estimating the rest of the 
parameters in the multivariate density evaluated in the 
standardized (zero mean and unit variance) variables. 
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Secondly, portfolio distribution parameters are estimated in the 
univariate SNP density constrained to the portfolio mean and 
variance obtained from the estimates of the previous step. 
Thirdly, the appropriate quantile of the estimated portfolio 
distribution given a probability (i.e portfolio VaR) is obtained 
by implementing recursive algorithms. 

The next Section (2) describes the methodology for 
calculating a portfolio’s VaR under both the Normal and the 
SNP distributions in detail, and Section 3 displays the 
empirical results obtained for a bivariate portfolio of S&P500 
index and long run interest rates in United States with different 
weights and specifications. These results show that traditional 
methods provide underestimated VaR measures (especially for 
high confidence levels) but heavy-tailed distributions 
overestimate portfolio VaR compared to the more general and 
flexible SNP approach. The conclusions of the paper are 
gathered in Section 4. 

II. PORTFOLIO VAR FOR GAUSSIAN AND SNP DISTRIBUTIONS 

In this section we summarize the statistical procedures to 
compute portfolio VaR under either the traditional Gaussian 
assumption or the more general SNP specification. For this 
purpose we model the joint behavior of a group of asset 
returns as a random vector,  

 
n

ntttt xxxx ℜ∈= ),,,(' 21 ⋯ ,       (1) 

  
whose conditional distribution, denoted by 
 

1−Ω ttX  ∼ )),(),(( δαφµ tttF Σ ,       (2) 

 

is parameterized in terms of its first ( tµ ) an second ( tΣ ) 

conditional moments (depending on the parameter vectors φ  
and α , respectively)  and the shaping parameters, included in 

vector δ  that, for the sake of simplicity, is considered 

constant over time. Note that 1−Ω t  stands for the available 

information set at time t.  
Without loss of generality we model conditional means and 

variances by AR(1) and GARCH(1,1) processes, respectively, 
as shown in equations (3) and (4). The former model has been 
proved to capture the small predictable component of 
conditional mean of financial returns and the second 
incorporates the salient features of conditional variances of 
asset returns, i.e. volatility clustering or persistence – see the 
seminal papers in [9] and  [10] or, more recently, in [11]. 
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where ititit x µε −= , 11 <iφ , 00 >iα , 10 ≤≤ siα  

2,1=∀s  and 121 <+ ii αα , ni ,...,2,1=∀ . Alternatively, 

many other models to capture asymmetries (leverage effect) 
can be used as in [12] or [13]. Moreover, we also assume 

constant correlation coefficients ( ijρ ) (i.e. the CCC model), 

as proposed in [14], although the extension to the DCC model 
by [8] is also possible as shown in [7]. 
   Given a vector, 
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such that  10 ≤≤ iθ  ni ,...,2,1=∀  and ∑ =
=

n
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portfolio can be defined by the linear convex combination in 
equation (6). 
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It is clear that the conditional mean and variance of the 

portfolio is given by 
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The portfolio VaR is the maximum expected loss of the 

portfolio with a given probability (p) and over a certain time 
horizon – see e.g. [15]. Hence the portfolio VaR at time t and 
with the probability p, denoted by VaR(p) is the corresponding 
quantlie of the probability density function (pdf hereafter) of 

the portfolio at this time, )(•f . 

 

tty
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For example, if we assume that the vector xt  is Normally 

distributed, the VaR computation is straightforward, since this 
distribution depends only on its first and second moments and 
this distribution is invariant with respect to linear 
transformations. Therefore, in terms of the quantile of the 

N(0,1) for a the confidence level p, )( pλ , the portfolio VaR 

can be obtained as 
 

)()( ppVaR ytyt λσµ −= .             (10) 

 
In other words, if financial returns are Normally 

distributed, the portfolio VaR will be directly obtained through 
the estimates of the parameters for the location and scale 
models in equations (7) and (8) and the multivariate Gaussian 
pdf - equation (11) – quantiles.  
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Unfortunately, asset returns are not Normal and, then, VaR 

measures obtained through this method are clearly misleading. 
In fact the heavier the tails of the portfolio distributions are 
and the more skewed the distribution is, the bigger the 
underestimation of risk is obtained by applying such 
procedure. 
        In order to tackle this problem in this paper we propose 
the use of more flexible SNP density specifications based on 
Gram-Charlier series. The rationale of the use of these series is 
based on the known fact that any frequency function, h(x), can 
be expanded in a (infinite) series of derivatives of the standard 
– i.e. N(0,1) – Gaussian density, g(•), as shown in equation 
(12), 
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where Hs(•) stands for the so-called Hermite polynomials that 
can be obtained through the following derivatives  
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   The Hermite polynomials hold interesting properties; among 
which the orthogonality – see equation (14) – is the basis of 
the up to one integration of SNP densities, which are based on 
them – see [16] for further details about these polynomials. 
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   For empirical purposes the Gram-Charlier expansion needs 
to be truncated at some degree m. Therefore the SNP 

distribution of variable 
itx  can be described as 
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The truncated series, however, do not guarantee 

positiveness. This problem has been tackled from different 
perspectives; squaring the expansions (and scaling the 
resulting density) – as proposed in [3] – and taking into 
account the positivity regions in terms of skewness and 
kurtosis – as in [17] –  being the most fruitful alternatives. 

However, if maximum likelihood procedures converge they 
necessarily do it to estimates that guarantee positiveness – as 
argued in [18]. Furthermore, these authors show that the 
densities based on this type of expansions feature the salient 
empirical regularities of financial returns such as thick tails or 
asymmetries. 
   The good performance of the Gram-Charlier densities has 
been recently extended to the multivariate framework in [5] 
and [6], which provided a general family of multivariate 
distributions encompassing most of the univariate SNP 
alternatives proposed in finance to account for the asset returns 
distribution. The simplest case is given in equation (17), 
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where G(•) represents the multivariate Normal pdf in equation 

(11), g(•) stands for the N(0,1) pdf, itz  are the standardized 

variables in equation (16) and  
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are the corresponding linear combination of Hermite 
polynomials (without loss of generality we assume the same 
truncation order, m, for every dimension). 

It is noteworthy that the Gaussian distribution is nested in 
the family of Gram-Charlier distributions (it can be trivially 

obtained by constraining 0=jiδ , ni ,...,2,1=∀  and 

mj ,...,2,1=∀ ). Even more, the portfolio distribution can be 

obtained in terms of the moments (or the parameters) of the 
multivariate joint distribution. For example, if we consider that 
portfolio distribution can be approximated by the Gram-
Charlier distribution expanded to the fourth term and 

considering that 0=jiδ  4≠∀j and ni ,...,2,1=∀ , the 

density can be expressed either as a function of 4δ  – see 

equation (19) – or the fourth moment of the portfolio variable 
as in equation (20). 
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Note that in equations (19) and (20) it follows that 
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Then, portfolio distributions can be obtained in terms of 

moments an co-moments of the marginal densities, e.g. for a 
simple portfolio of two assets it holds that 
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Note that the co-volatility, i.e. [ ]2
2

2
1 tt xxE , among both assets 

can be obtained from the moments of the Gaussian density – 
see [6] for more details about cross-moments of multivariate 
Gram-Charlier densities. Alternatively, the univariate portfolio 
distribution can be directly estimated subject to the portfolio 
mean and variance – previously estimated from equations (7) 
and (8) under the corresponding multivariate SNP distribution. 
In the empirical application presented in next section we adopt 
this latter approach. 
   Finally, once the portfolio distribution has been estimated its 
quantiles for the given probability p must be obtained to 
compute VaR as in equation (10). For this purpose it must be 
taken into account that for the standard (i.e. zero mean and 
unitary variance) Gram-Charlier pdf distribution, 
 

   ∑∫
=

−

−

∞−
−=

m

j

jj

p

pHpgdrrgp
2

*
1

*
)(

))(())(()(
*

λδλ
λ

.  

                       (23) 
 

Note that the quantiles, 
*)(pλ , for the SNP Gram-Charlier 

densities can be obtained through their N(0,1) counterparts. 
Therefore, it is clear that for extreme values the quantiles are 
bigger (i.e. the distribution has fatter tails than the Normal). 
This is the reason behind the fact that the SNP methods 
provide more accurate VaR measures. It is not only the more 
flexibility of the distribution to adapt different shapes with its 
general parametric approximation (more flexible than other 
parametric alternatives proposed in financial literature) but 
also the fact that if the expansion is large enough we can 
consider that it accurately approximates the true portfolio 
distribution. 

 

III. EMPIRICAL APPLICATION 

The model shown in previous section was estimated by 
maximum likelihood (ML hereafter) for two-asset portfolios. 
We used daily data of continuously compounded returns, 
measured as 

 

)/log(100 1−= ttt PPy ,       (24) 

 

where tP  stands for the corresponding asset prices at time t.  

The particular empirical example shown in this section 

considers portfolios of a stock index (Dow Jones industrials 
index) and the long run interest rates in United States (10 year 
benchmark bond yields from US Treasury), using  different 
weights (either θ1=0.1, θ1=0.5 or θ1= 0.9, being θ1 the weight 
for the first portfolio asset). The results, however, can be 
replicated using most financial series of high frequency data. 
The sample period used for both series ranges from 4/1/93 to 
28/5/06 (3495 observations). 

We apply the methodology explained in previous section 
assuming either Normal, SNP or Student’s t distribution and 
also accounting for conditional heteroskedasticity. Despite the 
fact that the resulting models are highly non-linear, the 
implementation of ML algorithms does not seem to be very 
demanding. However, the accurate selection of the initial 
values for the density (d2i, d4i, d6i and d8i, ∀i=1,2), the AR(1) 
(φoi and φ1i, ∀i=1,2) and the GARCH (α0i, α1i and α2i,∀i=1,2) 
parameters may help the algorithms to achieve a rapid 
convergence.  The choice of initial values is based on the 
direct relation among the density parameters and the density 
moments. For example, d2i captures part of the distribution 
variance, whilst d4i accounts for the excess kurtosis. Moreover, 
the asymmetries depend on the odd parameters of the 
distribution, which were removed after having tested that they 
were not significantly different from zero (see [18] for a 
description of the distribution moments). The expansions were 
also truncated at the 8th order according to accuracy criteria. 

Table I displays parameter estimates of the joint 
distribution of portfolio variables under the Normal (NOR), 
and SNP distribution, as well as those for the multivariate 
Student’s t (ST) with v degrees of freedom – see [19] for the 
details on this density. The estimates confirm the common 
pattern of high frequency financial data: unpredictable 
conditional means (φ1i, ∀i=1,2, is not significant), high 
persistence in conditional variances (φoi+φ1i, ∀i=1,2, is very 
close to one) and leptokurtosis (d4i > 0, ∀i=1,2, and v is quite 
low). Furthermore there are also strong evidence of extreme 
values since expansions up to the eighth term are required (d6i 
and d8i, ∀i=1,2, are clearly significant). Finally, the correlation 
among both assets is high and negative, as expected. 

 The log-likelihood values also show clear evidence in 
favor the multivariate SNP distribution. It must be also noted 
that the straightforward implementation of the LR test1 induces 
a strong rejection of the Normal density compared to the SNP, 
since the multivariate Normal is nested on the SNP. In 
consequence, the portfolio’s VaR under normal assumptions is 
clearly misleading for asset returns. This evidence has 
previously been stated by different authors, e.g. [21] or  [22] 
compare Normal-VaRs to those obtained under a Student’s t 
distribution or a semi-parametric method.  

 
 

 
1 LR=2[lnL(SNP)−lnL(Normal)]∼χ2q, q being the number of SNP 

distribution parameters. Note that this test is more general than other tests 
such as the traditional normality test by [20], because it accounts not only for 
the third and fourth moments (captured by d3i and d4i respectively) but also 
for other moments (incorporated in the other parameters of the distribution). 
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Once the conditional first and second moments were 

estimated consistently with the SNP hypothesis, we proceeded 
with the estimation of the parameters of the portfolio 
distribution (δ2y, δ4y, δ6y and δ8y parameters) constrained to the 
estimated portfolio mean and variance – equations (7) and (8). 

Tables II, III and IV displays the estimates for the 
portfolio distribution and the corresponding VaRs at different 
confidence levels (α = 0.05, α = 0.025 and α = 0.01) and 
weighting Dow Jones index by θ1 = 0.1, θ1 = 0.5 and θ1 = 0.9, 
respectively. These results highlight the fact that the 
underestimation of VaR under the normality assumption is 
higher the lower the confidence level (e.g. for θ1 = 0.1 and α = 
0.05 the VaR obtained under the SNP hypothesis are just 0.7% 
bigger than the Gaussian VaR but the difference increases to 
the 11.3% for the same portfolio and α = 0.01). Moreover, for 
such confidence levels VaR estimates are significantly bigger 
when assuming a Student’s t than an SNP distribution. This 
evidence is consistent with [18] who found that the degrees of 

freedom of the Student’s t could be understated when fitting 
high frequency densities since this parameter must not only 
capture the thickness at the tails but also the sharp peak at the 
mean. In consequence, the VaR obtained under the Student’s t 
might be overestimated (particularly for high confidence 
levels). Note that the estimates for the degrees of freedom of 
Student’s t (denoted by v in the tables) are less than 4 in some 
cases, which implies the non existence of the fourth order 
moment. On the other hand, these problems do not occur under 
the SNP distribution, where tails behavior is captured jointly 
by several parameters and moments of all order exist. 
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Finally, it is also noteworthy that this approach allows the 
analysis of the sensitivity of the VaR to changes in relation to 
the portfolio weights. For example, in Table II it is easy to 
check that the portfolio VaR increases as the weight of the 
long run interest rates decreases. Therefore, the estimates of 
different portfolios can help risk managers to choose those 
strategies that minimize VaR at any period depending on 
weights and confidence levels. 

 

 

 

IV. CONCLUSION 

SNP distributions have been shown capable of fitting 
financial univariate densities more accurately than other 
popular densities used in finance such as the Student’s t ( [11] 
provide clear evidence of this issue). These flexible SNP 
distributions can also be generalized to a multivariate context 
and thus used to estimate the whole distribution of portfolio 
variables. This article proposes to calculate portfolio’s VaR 
consistently with the SNP distributional hypothesis in a three-
step procedure: In the first step the variance and covariance 
matrix is jointly estimated in the multivariate SNP density. In 
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the second step, portfolio variance is computed and the 
(univariate) portfolio distribution is estimated constrained to 
the previous estimation of the portfolio variance; And in the 
third step the quantiles of the portfolio SNP distribution are 
worked out given the chosen confidence level. For the sake of 
comparison, the analyses are carried out under the Normal, the 
SNP and the Student’s t distribution. Finally, we summarize 
the main conclusions of the study: 

1.- VaR methodologies should incorporate the non-
normality of most high frequency financial variables. The SNP 
distributions are capable of accounting for the main empirical 
features of most high frequency data and provide a flexible 
and simple parametric representation of the underlying (true) 
density. Moreover, these distributions generalize the Normal 
and, therefore, their comparison to the Normal can be 
straightforwardly done in terms of the traditional non-linear 
restriction tests or accuracy criteria. 

2.- The variance and covariance matrix of portfolio 
variables can be estimated consistently with the SNP 
specifications, since SNP densities can be generalized to a 
multivariate context in a natural way (i.e. marginals remain 
within the same family). Additionally, different time varying 
variance hypotheses, such as a GARCH or stochastic volatility 
models (see [24] for a comprehensive survey on the latter 
models), can be also implemented. 

3.- Portfolio VaRs computed under the SNP distribution 
seem to be higher than the VaR under normality, but lower 
than the VaR obtained by assuming the Student’s t 
distribution. This means a clear underestimation of the VaR 
when only the first and second order moments are used (i.e. 
under normality) and, probably, an overestimation of the VaR 
when the Student’s t is used. This assessment is explained by 
the underestimation of the degrees of freedom of this 
distribution (in an attempt to capture both the sharp peak and 
the thick tails with the same parameter). 

4.- The flexible specification of the SNP distribution may 
be an interesting tool for risk management (see e.g. [23]) since 
VaR measures can be improved by considering not only the 
conditional variance, but also higher order moments. Within 
this framework, an interesting approach would be the search of 
those strategies that minimize VaR at any period, depending 
on weights and confidence levels. 
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