
 

 

  
Abstract— This paper presents a new method to synchronize 

chaos in nonlinear systems. This new method is called Generalized 
Backstepping Method (GBM) because of its similarity to 
Backstepping Method (BM), but its more abilities to control 
nonlinear systems than it; such as wide range of controllable systems, 
better settling time, lower overshoot and etc. In paper chaos in 
Lorenz equations is selected as case study. 

This method has some coefficient that positively is only condition 
to select them. In papers this parameters are chosen optionally but 
optimal selection of this parameters help to receive best response of 
systems.  

In this study Genetic Algorithm (GA) is chosen to optimize these 
parameters. GA select best values for them by minimizing fitness 
function that defined to minimize error function. The results of 
simulations prove more abilities of GBM than many methods to 
decrease error. 
 

Keywords— Lorenz chaos, Lyapunov, Generalized Backstepping 
Method, Genetic Algorithm.  

I. INTRODUCTION 
N recent years, there has been many interest in the control of 
chaos in nonlinear dynamical systems, as in [1] proposed an 

adaptive method to control nonlinear systems was called 
Generalized Backstepping Method (GBM) because of its 
likeness to Backstepping Method (BM) but its abilities to 
control more systems than it. This adaptive method was 
applied to Lorenz system.   

Saverio Mascolo proposes a great benefit of its method in 
[2] that it has the flexibility to build the control law by 
avoiding cancellations of practical nonlinearities. As a result, 
the aims of stabilization of chaotic motion and tracking of a 
reference signal are achieved with a reduced control effort. 
C.Wang and S. S. Ge in [3] consider the problem of 
controlling chaos in the Lorenz system. Firstly they show that 
the Lorenz system can be changed into a nonlinear system in 
the so-called general strictly feedback form and then 
backstepping design is used to control the Lorenz system with 
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key parameters unknown. In [4] also authors propose chaos 
control with an additive, inequality forced, and scalar control 
input is inspected. The control aim is to stabilize the unstable 
system equilibrium or balance. Over the last decade different 
impressive methods have been proposed and utilized [5–11] to 
achieve the control and stabilization of chaotic systems. 

This paper investigates combination of the methods 
backstepping and genetic algorithm. New control method is 
more optimize than current backstepping method. This 
method is used for synchronization the Lorenz chaos. 
Backstepping method designs a controller for the Lorenz 
chaos, this controller has some parameters which accept the 
positive values. Usually these values are selected arbitrary. 
With respect to various values of parameters, controlled 
system indicates various reactions. Selection the wrong 
parameters cause unfavorable reaction so that can cause 
system instability. Genetic algorithm optimizes this controller 
so that appropriate and optimal values for these parameters are 
selected. For this purpose, genetic algorithm minimizes 
Fitness function to hereby finds lowest exist value for the 
function. Also fitness function finds lowest values for 
minimizing total squares error. Fitness function causes error 
of system to decay to zero, quickly. So the system has short 
and optimal setting time which has less overshoot than 
previous works. 

Designed controller is used easier and has smaller control 
signal than previous works, so that will not cause saturation of 
operators. In addition, this controller is more economical and 
more optimize than previous controllers. Also by selection the 
various fitness functions can be achieved to other favorable 
results. 

II. BACKSTEPPING METHOD 
Consider the strict-feedback nonlinear system as follow:  
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Where [ ]T
nxxx ,,1 K= , )0(if  and )0(ig are smooth 

functions with 0)0( =if and 0)0( ≠ig . 
Step 1 

Considering the first subsystem of (1), take 2x as a virtual 
control input and choose as follow: 
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The first subsystem is changed to be 11 ux =& . Choosing 

111 xku −=  with 01 >k , the origin of the first subsystem 
01 =x is asymptotically stable, and the corresponding 

Lyapunov function is 2)( 2
111 xxV = , (2) is changed to 
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Step 2 

Considering ( )21, xx , take 3x  as a virtual control input and 
choose:  
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The ( )21, xx  subsystem is changed to: 
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Which is in the form of integrator backstepping. So the 
control law 2u  is as follow: 
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Where 02 >k . This control law asymptotically stabilizes 
( ) ( )0,0, 21 =xx  and Lyapunov function is  
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 Substituting (6) into (4) gives 
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The remaining step can be deduced by analogy. Until step 
n , actual control would be determined the law )(xu nΦ= , 
which can asymptotically stabilize (1). 

III. GENERALIZED BACKSTEPPING METHOD 
Generalized backstepping method will be applied to a 

certain class of autonomous nonlinear systems which are 
expressed as follow: 

 

⎩
⎨
⎧

+=
+=

uXgXf
XGXFX

),(),(
)()(

00 ηηη
η

&

&
                                                   (9) 

 

In which ℜ∈η  and n
nxxxX ℜ∈= ],...,,[ 21 . In 

order to obtain an approach to control these systems, we may 
need to prove a new theorem as follow. 
 
Theorem: Suppose (9) is available, then suppose the scalar 
function )(xiΦ  for the thi  state could be determined in a 

manner which by inserting the thi term forη , the function 
)( xV  would be a positive definite (11) with negative 

definite derivative. 
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Therefore the control signal and also the general control 
Lyapunov function of this system can be obtained by (11) and 
(12). 
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Proof. (9) can be represented as the extended form of (13). 
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)(xV is always positive definite and therefore the negative 
definite of its derivative should be examined; it means )(xW  
in (14) should always be positive definite, so that )(XV&  
would be negative definite. 
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By uXgXfu ),(),( 000 ηη +=  and adding )()( XXg ii Φ±  to 

the thi  term of (13) and (15) would be obtained. 
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Now we use the following change of variable. 

)()( 0 XuzXz iiii Φ−=⇒Φ−= &&η                         (16) 
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Therefore (15) would be obtained as follows: 
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Regarding that iz  has n  states, 0u  can be considered with n  
terms. So (19) would be established as follows. 
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Therefore, the last term of (18) would be converted to (20). 
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Control Lyapunov function would be considered as (21). 
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This is a positive definite function. Now it is sufficient to 
examine negative definitely of its derivative. 

[ ]

∑∑

∑

==

=

+
∂

∂
+

Φ+
∂

∂
=

n

i
ii

n

i
i

i

n

i
iii

i
t

zXg
x
XV

XXgXf
x
XVXV

11

1

)()(

)()()()(),(

λ

η&

                   (22) 

In order to negative definitely ),( ηXV t
& , it is sufficient that 

the value of iλ  would be selected as: 
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Therefore, the value of ),( ηXV t
& would be obtained as: 
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Which indicates that the negative definitely status of the 
function ),( ηXVt

& . Consequently, the control signal function, 
using the (15), (17) and (19) would be converted to (25). 
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Therefore (11) and (12) can be obtained. Now, considering 
the unlimited region of positive definitely of ),( ηXVt  and 

negative definitely of  ),( ηXVt
&  and the radically unbounded 

space of its states, global stability gives the proof. 

IV. GENETIC ALGORITHM 
The most of optimization algorithms are based on the 

gradient of the cost function, so for the ill choice of the initial 
point or the interval search. These algorithms can be misled on 
the locally optimum and can’t achieve the globally optimum. 
For this problem, a class of optimization algorithm, like 
genetic algorithms, is developed to avoid this constraint.  

In its most general usage, genetic algorithms refer to a 
family of computational models inspired by evolution. These 
algorithms start with many initial points in order to cover all 
search intervals and encode a potential solution to a specific 
problem on a simple chromosome like data structure and 
apply recombination operators to these structures so as to 
preserve critical information. An implantation of genetic 
algorithms begins with a population of chromosomes 
randomly bred. We evaluate each chromosome by using the 
objective function called Fitness function.  

In order to apply the genetic reproductive operations called 
crossover and mutation, we select, randomly, two individuals 
called parents and we apply the crossover operation, if its 
probability reaches, between parents by exchanging some of 
their bits to produce two children. A mutation is the second 
operator applied on the single children by inverting its bit if 
the probability reaches. After this stage we obtain two 
population: a parent population and a children population, the 
individual who has a goodness solution is preserved [12]. In 
recent years, genetic algorithm has been used to optimize a lot 
of systems [13-14] that improved the efficiency of method to 
optimize answers. 

The genetic algorithms are used to search the optimal 
parameter k  ( 2,1; =jk j

is positive constant) in order to 

guarantee the stability of systems by ensuring negativity of the 
Lyapunov function and having a suitable time response. The 
fitness function used is 
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ix is system state and dix is favorite mood for ix . Based on 
the system purpose for placing the states at zero value dix is 
equal with zero. 
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V. CONTROL LORENZ SYSTEM 
The chaos theory was discovered for the first time in 

meteorological activities by the mathematician and 
meteorologist of MIT called Edward Lorenz. Although the 
scientists were very interested in solving the problems in 
connection with nonlinear systems, but none of them 
accomplished this problem, seriously. Lorenz declared that the 
intensive sensitivity to initial conditions would cause in 
predictability of these equations in the next years. 

He obtained a series of equations by simplifying the 
available systems which were then called Lorenz equations 
terminologically. 

The Lorenz system is described as: 
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Where 28,3/8,10 === cba  are system parameters and 
zyx ,, are state and initial values )10,10,10(),,( −=zyx .  

Fig.1, Fig.2, Fig.3 and Fig.4 show the variations of states 
and 3rd dimensional phase portrait of Lorenz equations 
respectively. 
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Fig. 1 variations of state x  of Lorenz equations 
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Fig. 2 variations of state y  of Lorenz equations 
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Fig. 3 variations of state z  of Lorenz equations 
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Fig. 4 3rd dimensional phase portrait of Lorenz equations 

 
The generalized backstepping method is used to design a 

controller. In order to control Loenz system we add a control 
input 1u  to the 3rd equation of (27). Then the controlled 
Lorenz system is: 
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In order to convert Lorenz system to the general state of (9), 
the change variable xyr −=  should be carried out. Therefore 
(28) would be converted to (29). 
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It is sufficient to establish (30) and (31) to use the theorem. 

1),(1 −= cyrφ                                                         (30) 

cyr =),(2φ                                                                 (31) 

So the control signal and Lyapunov function for (27) will be 
as: 
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Fig. 5 time response of x in (28) with (32)  
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Fig. 7 time response of z  in (28) with (32)  
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Fig. 8 Lyapunov function for changes of ),( yx    
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Fig. 9 Lyapunov function for changes of ),( zx    
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Fig. 10 Lyapunov function for changes of ),( zx    
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After using the genetic algorithm obtained these optimal 
parameters: 498.4,116.0 21 == kk . According to (32), (29) has 
been stabilized at the point ),0,0( α . The results are shown in 
Fig.5, Fig.6 and Fig.7.  

Table.1 shows the parameters of genetic algorithm.  
Lyapunov function with changes of ),( yx , ),( zx  and ),( zy  

are shown in Fig.8, Fig.9 and Fig.10 respectively.  
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TABLE I 
SHOW THE GENETIC ALGORITHM 

Parameters Values 

size population 100 
maximum of generation 300 

prob. crossover 0.75 
prob. mutation 0.001 
Search interval de [0.1,10] 
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Fig. 11 time response of x  in (34) with (37)  
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Fig. 12 time response of y  in (34) with (37)  
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Fig. 13 time response of z  in (34) with (37)  
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Fig. 15 control signal (34) for (37)  

In order to control Lorenz system to the origin point )0,0,0( , 
can add a control input 2u  to (27) then 
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In order to theorem, it is sufficient to establish (35) and (36). 
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0),(2 =zxφ                                                                 (36) 

So the control signal and Lyapunov function will be as: 
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By using the genetic algorithm obtained these optimal 
parameters: 52.4,234.8 21 == kk . The results are shown in 
Fig.11, Fig.12, Fig.13, Fig.14 and Fig.15. 

VI. TRACKING DESIRED TRAJECTORY 
In this section a control law 2u so that x  can track any 

desired trajectory )(tr  would be obtained. If x is deviation 
between the output x and )(tr  then )(trxx −= .  
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Fig. 14 3rd dimensional phase portrait of Lorenz equations 

 

 

 

 

 

 

 

 

 

Therefore (34) would be converted to (39). 
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It is sufficient to establish (40) and (41) to use theorem. 

a
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0),(2 =zxφ                                                              (41) 

So the control signal and Lyapunov function will be as: 
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Fig. 17 control signal (42) to track tSintr =)(   
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Fig. 16 x track tSintr =)( with (42)  

( ) ( ) ( ) yrxcykykxau ++−−−−−−= 22112 φφ            (42) 
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After using the genetic algorithm obtained these optimal 
parameters: 132.0,983.9 21 == kk . 

To track tSintr =)(  Fig.16 and Fig.17 can be obtained. 

VII. DISCUSSION 
By comparing the figures the following results can be 

obtained: 

• In the generalized backstepping method in relation to the 
backstepping method, not only is used for more class 
than it but also the states of system are stabilized by a 
more limited control signal. Consequently, it is less 
possible that the control signal to be saturated. 

 

• In the generalized backstepping method in relation to the 
backstepping method [15], synchronization will be 
accomplished in a much shorter time and overshoot. 

Considering the results obtained from simulations, the much 
more efficiency of generalized backstepping method in 
relation to the backstepping method will be demonstrated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VIII. CONCLUSION 
In this study¸ a new method to control nonlinear systems is 

presented. The method proposed which is called the 
generalized backstepping, by feed backing the dynamics of 
system and without eliminating the nonlinear dynamics, a 
controller is designed. The designed controller consists of 
parameters which accept positive values. The controlled 
system presents different behavior for different values. 
Improper selection of the parameters causes an improper 
behavior which may cause serious problems such as instability 
of system. 

Genetic algorithm optimizes the controller to gain optimal 
and proper values for the parameters. For this reason GA 
minimize the fitness function to find minimum current value 
for it. On the other hand fitness function finds minimum value 
to minimize least square errors. 

By this approach the setting time and overshoot reach to 
their minimum values that are demonstrated to have more 
optimal values when compared with previous methods. 
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