
 

 

  

Abstract— In this paper we have analyzed the performance of 

some Value at Risk models through the quadratic loss function 

backtesting approach. In order to highlight the differences among 

VaR models we have calculated the risk measure through Historical 

Simulation, EWMA, GARCH and EVT models. VaR was calculated 

on daily data of five Eastern and Central European main indices: 

BET (Romania), PX50 (Czech Republic), BUX (Hungary), SOFIX 

(Bulgary) and WIG20 (Poland) from 30.09.2004 to 30.09.2010. In 

order to highlight different behaviors in the crisis period we have 

divided the data into two samples and found that only advanced VaR 

models such as Extreme Value Theory or GARCH models can 

adequately measure the risk of the capital markets and satisfy the 

requirements of the investors in periods characterized by extreme 

events. 

 

Keywords—Extreme Value Theory, EWMA models, GARCH 

models, Value at Risk.  

I. INTRODUCTION  

HIS paper analyzes the volatility of five stock exchange 

indices from Central and Eastern European financial 

markets in periods characterized by extreme events and 

propose some Value at Risk (VaR) models in order to quantify 

and manage the risk of portfolios exposed to these markets. 

The results could also be used by the investors in order to 

fundament their portfolio investment decision, through buying 

the titles that decrease their portfolio VaR and liquidating the 

positions held on titles that increase the portfolio VaR.  

Another object of the article is to show which of the VaR's 

models is better performing at high confidence levels of 

investors and which measure of risk performs better in periods 

characterized by extreme volatility market conditions. 
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This paper is organized as follows. Section 2 presents the 

most important and recent studies in the literature regarding 

the subject of the paper. Section 3 mentions the Value at Risk 

methodology with emphasis on some of its models: Historical 

Simulation, EWMA models, GARCH models and Extreme 

Value Theory models. Section 4 presents the backtesting 

procedure. In section 5 is presented a case study which 

analyzes the volatility of five stock market indices form 

Central and Eastern Europe: BET (Romania), PX50 (Czech 

Republic), BUX (Hungary), SOFIX (Bulgary) and WIG20 

(Poland) from 30.09.2004 to 30.09.2010, through the above 

models and its impact on the portfolio investment decision 

taken. Section 6 concludes our present research. 

II. LITERATURE REVIEW   

In order to fundament their investment decision, investors 

analyze the volatility of the financial titles by a variety of 

methods. One of the most used methodology is Value at Risk 

which expresses the maximum loss of a portfolio at a given 

confidence level [1]. Its accuracy depends crucially on the 

models used to estimate it.  

Value at Risk is a very useful risk measure both for 

individual and institutional investors. The research on this 

methodology was initiated by Jorion [1], which was followed 

by Dowd [2], and Saunders [3], but it became a risk 

management tool for the financial institutions since July 1993 

when the Group of Thirty Report was presented, when 

regulators, shareholders and management finally had a 

common measure to quantify the risk of a portfolio of different 

financial assets. This measure it is also recommended by the 

Basel Committee on Banking Supervision [4] in quantifying 

the banks' exposures to market risk. When computing VaR 

through different methods it should be taken into consideration 

that most of the financial returns’ distributions aren’t normally 

distributed at shorter and larger horizons. Moreover, at higher 

frequencies the return distributions tend to present non-normal 

features and are characterized by “fat-tails” [5]. These tails 

have a higher density than that which is predicted under the 

assumption of normality [6].  
These have important consequences on estimating VaR, 

because the normal distribution could underestimate the risk 

and the capital requirements needed to cover the losses that 

results, putting the investor into a risky position [7]. The 

solution found was to use other distributions which allow for a 

better modeling of larger movements than the normal 

distribution (like Pareto distribution and Student t 
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distribution). The recent studies proposed to analyze only the 

distribution of extreme returns, instead of describing the 

behavior of all of the returns [8] - [10]. 
Related to these studies is the Extreme Value Theory, 

introduced by Embrechts [11], [12], although the basics were 

initiated by Fisher and Tippett (1928) when proposing the 

Generalized Extreme Value (GEV) distribution [11]. The 

modeling of the financial variables through EVT was also 

studied by McNeil [13]-[15], by Danielsson and De Vries 

[16], [17] which computed a model for calculating the VaR, 

taking into account the inconsistency of extreme values and by 

Huisman et al. [18], [19] which proposed a new estimator for 

the tail index. Cott [20] demonstrated that traditional VaR 

methodologies tend to ignore extreme events. Bensalah [21] 
found that EVT is performing better than VaR when analyzing 

the evolution of daily exchange rates of Canadian/U.S. dollars. 

Applying the EVT on the overnight borrowing and interest 

rates on Turkey, Gencay and Selcuk [22] also came to this 

conclusion. Analyzing six major developed markets indices 

Gili and Kellezi [23] illustrated that EVT is better in modeling 

the tail related risk. LeBaron and Samanta [24] applied EVT to 

construct statistical tests in order to estimate the level of 

„fattness” in the tails of emerging and developed markets. 

Using Monte Carlo methods and bootstrapping tests of pooled 

returns they found that emerging markets have fatter negative 

tails than the developed ones. Schaumburg [25] proposed 

nonparametric quantile regression and EVT for computing 

Value at Risk. 

The Value at Risk methodology has also been criticized in 

the last period by the financial authorities, because the 

majority of losses that investment companies have suffered 

originated in the trading book. Financial Service Authority 

highlighted that short-term observation periods and the 

assumption of normal distribution can lead to large 

underestimation of probability of extreme loss events [26]. 
Senior Supervisors Group (2010) also motivated the need for 

more adaptive risk management practices and the importance 

of supplementing VaR with other risk measures [27]. After a 

study on eleven banks (2007) that are significant competitors 

in the affected markets it was discovered that they identified 

weaknesses in their implementation of VaR and the 

calculations based on new market data ranged from about 30% 

to 80% higher compared with the calculations obtained using 

data sets reflecting earlier [27]. Also they reported between 

two and sixteen back-testing exceptions, generated by much 

higher volatility that the historical data series implied. 

The biggest losses that banks have suffered during the 

financial crisis came from the trading portfolio because of the 

exposure to the securitized assets and collateralized debt 

obligations. As could be seen in Table 1, the capital 

requirements for marketable assets were much lower compared 

with banks’ estimates. 

 

 
TABLE I 

TRADING  ASSTES AND MARKET RISK CAPITAL REQUIREMENTS [36] 
 Trading assets / Total 

assets 

Market risk capital 

requirements / Total 

capital requirements 

2009 2006 2009 2006 

Bank of America 9 10 - - 

Citigroup 18 21 7 4 

Goldman Sachs 40 40 - - 

JPMorgan Chase 20 27 - - 

Wells Fargo 3 1 - - 

Banco Santander 12 20 7 - 

BNP Paribas 38 48 4  

Commerzbank 26 14 5 2 

Credit Agricole 23 31 2 6 

Deutsche Bank 16 32 9 4 

ING Bank 13 22 2 - 

Societe Generale 19 35 4 4 

Barclays 14 29 14 10 

HSBC Holdings 18 18 5 9 

Royal Bank of 

Scotland 

38 23 12 6 

Standard Chartered 13 5 9 4 

Credit Suisse 32 36 8 5 

UBS 17 37 6 6 

Nomura Holdings 45 36 47 - 

Mitsubishi UFJ 14 6 2 2 

(Source: BCBS, The Basel III Capital Framework: a decisive breakthrough, 

nov. 2010) 

 

III. VALUE AT RISK MODELS 

Institutional investors have developed models for 

quantifying, comparing and aggregating the risk connected 

with different positions and portfolios. One of the most used 

methods is Value at Risk, which is defined as the expected 

maximum loss of a portfolio over some time period and for 

some level of probability. From a statistical point of view, 

VaR entails the estimation of the quantile of the returns’ 

distribution. In other words, Value at Risk is the probability 

that returns or losses (ζ) are smaller than –VaR over a period 

of time (T) [1]: 

( ) ∫
−

∞−

⋅⋅=−<=
VaR

TVaR dPVaRPP ξξξ        (1) 

where PT is the probability distribution of returns over the time 

horizon T. 

In order to compute the VaR for a portfolio first we have to 

mark-to-market the portfolio and then to estimate the 

distribution of the portfolio’s returns , which is a very delicate 

statistical problem. After this investors could apply three types 

of models for calculating VaR: parametric, non-parametric and 

semi-parametric [28]. What makes the difference among them 

is related to the way they solve the distribution problem. When 

the returns are normal, which is very rarely in practice, it is 

preferred the variance-covariance approach. When risk is 

recurrent VaR could be estimated by using historical time 

series and for new situations it should be modeled through 

EWMA and GARCH models, which confine more attention to 

the recent observations. When risk is sensitive to rare events it 

is used the Extreme Value Theory. 

Graphically, Value at Risk could be represented like in 

Figure 1. 

 
FIGURE I 

THE VALUE AT RISK REPRESENTATION  
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The main limitation of the VaR methodology is that the 

assumption of normal distribution can lead to large 

underestimation of the probability of extreme events, which 

affects the capital requirements [26]. Also, the estimated 

distribution tends to fit only the central observations, falling in 

fitting the extreme observations.  

 

Historical Simulation 

Through historical simulation we could determine the risk of 

the portfolio by taking into consideration the past evolutions of 

the risk factors. The main advantage of using this method is 

the fact that we don’t have to make any assumption about the 

risk factors’ distribution, while the method is also easy to 

implement. With all these, the investors rarely use it in practice 

because of the imprecise predictions based on past events.  

Disadvantages of the method are enumerated below: 

• Estimates of future developments based on historical data, 

could lead to inaccurate forecasts if the past trend would not 

be repeated; 

• Gives equal importance to historic data and recent data, 

which do not properly capture the impact of an increase in the 

volatility of recent data; 

• Investment companies must have a historical database 

large enough to test the accuracy of the model, as shown by 

Vlaar (2000) in determining the Danish market interest rate 

risk; 

• On the other hand, if the period of observation is too large, 

the most recent observations have the same impact as the most 

distant observations, since they are weighted equally (Brooks 

and Persand, 2000); 

• It is difficult to apply if new risks appear in the stock 

trading because there is no historical data to capture their 

behavior; 

• Based on the assumption of constant volatility and 

covariance of portfolio returns the model does not permit the 

incorporation of changes in the market; 

• As most HS models calculates VaR on a sample collected 

over a period of 250 days, it appears the window effect. For 

example, if 250 days have elapsed from the occurrence of 

extreme market volatility, then it will not affect the calculation 

of VaR. 

Given these drawbacks, some researchers have tried to 

remove them proposing various models based on the 

combination between historical simulation and parametric 

models. 

 

EWMA models  

The EWMA (Exponentially Weighted Moving Average) 

model was popularised by the RiskMetrics department from 

J.P. Morgan. The risk is modelled by applying an 

exponentially moving average on the variances and 

covariances of the financial series [29]. The main 

improvement is that the observations are given different 

weights, the most recent data getting the highest weight. The 

weights decline rapidly as we go back. Also, one of the most 

important advantages of the model is that it responds 

immediately to market crashes. 

The volatility expressed by the model could be determined 

by the following equation [29]: 

( )∑
=

−−=
n

t

tt R
1

222 )1( µλλσ           (2) 

where
2

tσ  is the standard deviation, Rt is the return at moment 

t, µ is the mean value of the distribution, n is the time horizon, 

λ is the exponential factor that shows the persistency of 

volatility (it’s value could change between 0 and 1), and 1- λ is 

a parameter that shows the speed with which a shock in the 

market is absorbed by the volatility. 

By using a recursive substitution, we can rewrite the 

volatility as follows [29]: 

( ) 22

1

2 1 ttt R⋅−+⋅= − λσλσ            (3) 

This approach has two important advantages. One of the 

advantages is the fact that volatility reacts faster to shocks in 

the market because recent data carry more weight then the 

distant past data. The other advantage is obtained due to the 

fact that the volatility declines exponentially after any large 

shock, as the weight of the shock observation falls as 
1−tλ . 

One of the problems that this method has is choosing the 

exponential factor. RiskMetrics department recommends a 

0.94 value for daily volatility estimations and 0.97 for monthly 

volatility estimations. If the exponential factor is large, the 

total variance would be affected poorly by the current 

variance. The closer the exponential factor λ is to unity, the 

smoother the data series become.  

Taking these into consideration, the volatility for asset i at 

time t, could be written as follows [29]: 

∑
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The correlation between return forecasts could also be 

constructed in the same manner as performed for the volatility 

forecasts [29]: 

( )( )2211

1

12

,12 )1( rrrr tt

T

j

j

t −−−= ∑
=

−λλσ       (5) 

 

GARCH models 

GARCH (Generalised Auto-Regressive Conditional 

Heteroscedasticity) models were proposed by Engle and 
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introduced by Bollerslev [30], [31]. They are used in 

predicting the financial markets evolutions and have many 

versions.  It encompasses a broad class of models that estimate 

and predict the volatility and the correlations between different 

assets. The GARCH (1,1) can be described as follows [31]: 
2

1

2

1

2

−− ⋅+⋅+= ttt Xασβγσ            (6) 

where γ, α and β are the predicted parameters. α and β values 

show the persistence of the volatility, and α+β must be greater 

than 1. If the parameters were higher than the average, 

volatility will also be high. The parameter β is the same as λ 

(the exponential factor from the EWMA model), and α is the 

same as 1-λ (from the EWMA model). When γ=0 then the 

EWMA equation would be a special version of the GARCH 

model. 

Generally, the GARCH(p,q) model is [31]: 

∑∑
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where εt is a white noise, which can be determined form the 

next equation [31]: 

tit XR εβ +⋅=                 (8) 

In order to estimate VaR using the GARCH model, we 

should create the distribution of daily returns for the portfolio 

and then fit the model to these returns. Next, it is necessary a 

large number of simulations as many days ahead as the 

maximum time horizon that is of interest. Once the simulations 

are done, we can find the selected percentiles of the 

distribution of portfolio values within each simulated day. 

The model parameters can be estimated through the 

maximum likelihood method and must meet certain 

restrictions. They must be greater than 0, and for the process to 

be stationary it must be fulfilled the following condition: 

∑∑
==

≤+≤
q

j

j

p

i

i

11

10 βα                (9) 

In some cases there are aspects of the model which can be 

improved in order to capture better the characteristics and 

dynamics of the time series. First of all, the constraints 

imposed on the coefficients of the model are quite difficult to 

meet, so the solution would be the introduction of artificial 

conditions in order to force them to be within the range set. 

Secondly, in this form, the model does not take into account 

the effect of indebtedness (negative shocks have a greater 

impact on markets than the positive ones). 

In order to remedy these drawbacks researchers have 

developed a series of extensions of the model that make it 

more flexible, responding in a different manner to the market 

shocks. In the paper "Glossary to ARCH(GARCH)" published 

in 2008, Bollerslev identified no less than 146 GARCH type 

models, which appeared in the literature. Next we turn 

attention to some of them that are used most frequently for 

econometric modeling of the market risk. 

 There are some extensions of the basic GARCH model that 

makes it more flexible: Exponential GARCH model, 

Integrated GARCH model, GARCH in Mean model, 

Threshold GARCH model which respond in a different manner 

to the shocks in the market. 

•The GARCH-M (GARCH in Mean) considers the 

dependence of return’s volatility. It was proposed by Engle, 

Lilien and Robins (1987) by studying the term structure of 

interest rates behavior in the U.S., then it was extended by 

Bollerslev, Engle and Wooldridge (1988). The GACRH in 

Mean formulae is the following: 

 

yt = c + φ yt-1 + δ ht + ut                (10) 

 

•The T-GARCH model (Threshold GARCH) takes into 

account the effect of the debt by introducing a dummy variable 

(θ) to distinguish between the bad news (θ<0) and the good 

news (θ> 0). Zakoian model was introduced (1994), from the 

GJR-GARCH model of Glosten, Jaganathan and Runkle 

(1993). The Threshold GARCH model is the following: 

 

ht   = ω + α1ut-1
2
 + β1 ht-1  + θ It-1 ut-1

2 
         

It-1  = 1  if ut-1 < 0  and 
 
It-1  = 0 otherwise.       (11) 

 

•The E-GARCH model (Exponential GARCH) proposed by 

Nelson (1991) considers the asymmetric effects of positive and 

negative values of variables and uses the recorded log values 

to relax the constraints on the coefficients. The formulae for 

the Exponential GARCH model is: 

 

log ht  =  = ω + β1 log ht-1  + α1[θVt-1 + γ{|Vt-1| - E|Vt-1|}] (12) 

 

•The I-GARCH (Integrated GARCH) is actually a unit root 

GARCH model, which focuses on the persistence of past 

errors: 

ht = ω + α1ut-1
2
 +( 1-α1)ht-1.            (13) 

Also, there have been developed a series of other 

heteroscedastic models like CHARMA (Tsay, 1987), RCA 

(Nicholls and Quinn, 1982), the stochastic volatility model 

(Melino and Turnbull, 1990; Jacquier, Polson and Rossi, 

1994), stochastic volatility models with long memory and also 

multidimensional GARCH models: VECH (Bollerslev, Engle 

and Wooldridge, 1988), BEKK (Engle and Kroner, 1995), 

GO-GARCH (van der Wiede, 2002), GOF-GARCH (Lanne 

and Saikkonen, 2005). 

With regard to accuracy, the investors should be concerned 

if the ex-post performance of the model is compatible with the 

theoretically desired level. Also, the capital-adequacy 

framework provides an incentive to develop efficient models 

that offer enough coverage in relation to the risk so that 

financial institutions could meet the supervisors’ requirements 

with a minimum amount of capital. 

 

Extreme Value Theory 

Given the extreme variations that took place in the 

international financial markets, it was necessarily a more 

prudent approach for estimating the market risk in banks. 

Attempting to cover the shortcomings of previous models there 

have been developed a number of alternative methods for 

estimating VaR, through the combination of the parametric 

modeling with the non-parametric one. This has led to the 

development of models that incorporates extreme market 
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volatilities, directly modeling the extreme values that appeared 

in the distributions of financial variables. 

In order to remedy the problem of the fat-tails, EVT has 

become more and more used by financial institutions because 

it doesn’t make any assumption about the form of the 

distribution of financial returns. This approach is focused on 

the extreme events and states that in the case of a very large 

sample it converges toward a limit distribution. There are two 

approaches in identifying extremes in the data [11]: block-

maxima and excesses over a threshold. The first one, block-

maxima approach, takes into consideration the maximum value 

the variables take in successive periods and the procedure 

consists in dividing the series of observations in blocks. The 

maximum value of each block constitutes the extreme value. 

This method is often used to analyze data with seasonality. 

The second approach, excess over a threshold, which has been 

used in the most recent applications, focuses on the values 

exceeding a given threshold.  

The initial step in generating series by the block-maxima 

method is the Theorem of Fisher and Tippett (1928): Let (Xn) 

be a sequence of independent and identically distributed 

random variables. The maximum of the variables converges in 

law to the next distribution [11]: 

[ ]{ }
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where µ is a scalar, σ is the tendency and ξ indicates the 

thickness of the distribution’s tail. The larger ξ, the thicker the 

tail.  If ξ is negative, the distribution corresponds to a Weibull 

type; if ξ is zero the distribution corresponds to a Gumbel 

type; when ξ is positive it corresponds to a Frechet 

distribution. The most used in modeling the financial series is 

the last one, because performs better in capturing the fat tails. 

For a given probability p, the expression of VaR will be the 

following [11]: 
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The second approach, excess over a threshold, consists in 

determine the distribution of excesses over a chosen threshold, 

which can be approximated by a Generalized Pareto 

Distribution [11]: 
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where β is the tendency and ξ is the threshold, which should be 

large enough in order to satisfy the condition that permits its 

application and at the same time it should leave sufficient 

observations for the estimation. This approach is considered to 

be more efficient and it is used by the most institutional 

investors. 

So, the analytical expression of the VaR for a given 

probability p, could be defined as a function of GDP 

parameters [11]: 
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where u is the threshold, n is the total number of observations 

and Nu is the number of observations above the threshold u.  

 

IV. BACKTESTING PROCEDURE 

 

Also, it is recommended to use the backtesting procedure, 

based on testing a sample of 250 days data behind the day VaR 

is calculated. Through this method it is tried to determine how 

many times the VaR limit has been exceeded. Financial 

institutions could use two approaches: 

• The binary loss function approach, which is aimed 

to determine the factor k for capital dequacy. The test could 

be described as follows: 

ii
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VaRloss
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T





≥

<
=

,0

,1
             (18) 

The test result is:  

i

i

TT ∑= .  

• The quadratic loss function approach, which is 

used to compare different VaR models and consists in the 

following test: 
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where P is the portfolio loss.  

The test resut is: 

i

i

TT ∑= . 

One of the most representative studies on validation of the 

VaR is the Kupiec's (1997), who developed a methodology for 

determining the confidence intervals for the incidence of 

higher values than the estimated VaR. These confidence 

intervals are the quantiles of a distribution λ
2
 with with one 

degree of freedom (relation 20): 

where p is the probability used to estimate VaR, T is the 

number of observations in real activity and N is the number of 

observations that exceeded the VaR estimation. 

Confidence intervals increase while decreasing the 

likelihood of trust and while increasing the number of 

observations (see Tabel II). For increased probability of 

failure, the assessment in this way of the methodology used for 

determining VaR can be useful, the number of actual values 

exceeding VaR in a year being significant. For low 
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probabilities of failure, such as that proposed by the Basel 

Committee, this method of assessing the accuracy of the 

estimates is not significant. The number of observations in real 

activity should be very large in order to reach significant 

values and the phase shift time between the validation of the 

model and its implementation would be too high. This is one 

of the reasons why many financial institutions prefer to use a 

lower degree of confidence for the internal assessment of risk 

they are exposed to, making it easier to determine whether the 

model used underestimate or overestimate risk. 

 
TABLE II 

THE CONFIDENCE LEVELS  

 

 

After obtaining the back-testing results it should be 

determined in which risk zone the bank is located, and on this 

basis it should be determined the value of "k" in the Basel’s 

formulae for calculating the capital requirements for market 

risk. The more the bank will record multiple exceedances of 

the VaR the more it will move towards the major risk zone and 

accordingly will have to penalize the formulae for calculating 

capital requirements. The maximum number of exceedances of 

VaR on a 250 days horizon accepted by the Basel Committee 

is 4.  If the exceedancies occurs more than four times than the 

VaR model is not appropriate. BCBS defined the following 

risk zones:  

• the safe risk zone: no more than 4 exceedances of VaR;  

• the medium risk zone: between 4 and 9 exceedances of VaR;  

• the high risk area: more than 10 exceedances of VaR.  

 

V. ANALYZING THE VOLATILITY OF THE EASTERN AND CENTRAL 

EUROPEAN STOCK EXCHANGE MARKET 

 

In order to highlight the differences among VaR models we 

have calculated the risk measure through Historical 

Simulation, EWMA, GARCH and EVT models. VaR was 

calculated on daily data of five Eastern and Central European 

main indices: BET (Romania), PX50 (Czech Republic), BUX 

(Hungary), SOFIX (Bulgary) and WIG20 (Poland) from 

30.09.2004 to 30.09.2010. The daily closing prices were taken 

from http://www.bloomberg.com/markets/. Also, we have 

divided the data into two samples: the first sample is from 

30.09.2004 to 30.09.2010 (1.647 observations) and the second 

sample is from 30.09.2008 to 30.09.2010 (548 observations), 

in order to highlight different behaviors in the crisis period. 

The daily rentabilities were determined by the 

logarithmation of the indices’ closing prices. Applying the 

Jarque Berra Test on the daily rentabilities series we have 

observed that the normal hypothesis is rejected. The 

distributions are leptokurtic, more sharpen than the normal 

ones, for all of the samples, a fact shown by the kurtosis 

coefficient. Analyzing the skewness coefficient we have 

observed that BET, SOFIX and WIG20 distributions present 

negative skewness, compared with the normal distribution, 

which indicates that the negative shocks are more frequent 

than de positive ones. On the opposite, PX50 and BUX present 

positive skewness (Table III and Table IV). Applying the ADF 

and the Philipe-Peron tests it has been seen that the series 

composed of the indices’ closing prices have one unit roots 

were non stationary, but through first order differentiation they 

became stationary. 

 
TABLE III 

THE MOMENTS OF THE DISTRIBUTIONS (FIRST SAMPLE - 30.09.2004 TO 

30.09.2010) 

 RBET RPX50 RBUX RSOFIX RWIG20 

Observations 1646 1646 1646 1646 1646 

Mean   0.0017 0.0031 0.0047 0.0028 0.0037 

Median 0.0005 0.0003 0.0002 0.0001 0.0001 

Maximum 0.1876 0.2144 0.0318 0.2003 0.2455 

Minimum -0.1642 -0.1820 -0.1347 -0.1988 -0.2598 

Std. Dev.   0.0201 0.0198 0.0183 0.0232 0.0190 

Skewness -0.1954 -0.0176 0.0245 -0.2118 -0.3958 

Kurtosis 12.2005 21.1369 10.5432 22.8761 38.1524 

Jarque-Bera 9148.75 29875.24 5432.67 27654.22 125432.21 

Probability 0.0000 0.0000 0.0000 0.0000 0.0000 

 
TABLE IV 

THE MOMENTS OF THE DISTRIBUTIONS (SECOND SAMPLE - 30.09.2008 TO 

30.09.2010) 

 RBET RPX50 RBUX RSOFIX RWIG20 

Observations 547 547 547 547 547 

Mean   0.0013 0.0022 0.0038 0.0015 0.0026 

Median 0.0003 0.0004 0.0001 0.0002 0.0003 

Maximum 0.1534 0.2013 0.0298 0.1140 0.2106 

Minimum -0.2015 -0.1976 -0.1569 -0.2253 -0.2016 

Std. Dev.   0.0321 0.0285 0.0216 0.0299 0.0201 

Skewness -0.2004 -0.1036 0.0764 -0.2735 -0.3873 

Kurtosis 17.8243 26.4213 15.5190 28.7865 41.4382 

Jarque-Bera 10023.43 32974.53 7653.85 30735.33 130872.37 

Probability 0.0000 0.0000 0.0000 0.0000 0.0000 

According to all these factors, the distribution of the 

rentabilities presents fat tails, which correspond to the extreme 

variations that took place on the stock exchange market. Using 

the Historical Simulation method it can lead to an 

overestimation of VaR, especially that the method describes 

the maximum expected loss. Here appears the “volatility 

clustering” phenomena, which can be remedied by the 

heteroscedasticity models EWMA and GARCH. 

In order to eliminate the linear structure we propose some 

ARMA models studying the residuals’ correlogram, for which 

the AIC and BIC criterions are minimum: ARMA(4) for the 

first sample and ARMA(5) for the second sample. The 

remained residuals have a non-linear structure which was 

detected by the BDS test elaborated in 1987 by Brock, Dechert 

and Scheinkman, in order to check the stochastic non-linearity. 

The BDS test’s values are strong, which sustains the rejection 

of the normal hypothesis.  This tendency reflects a degree of 

heteroscedasticity, which means that the present volatility 

depends on the previous volatility. Unless the data is filtered, 

this dependence will undermine the value of VaR. In order to 

Probability (P) The number of observations (T) 

255 days 510 days 1000 days 

0,010 0 < N < 7 1 < N < 11 4 < N < 17 

0,025 2 < N < 12 6 < N < 21 15 < N < 36 

0,050 6 < N < 21 16 < N < 36 37 < N < 65 

0,075 11 < N < 28 27 < N < 51 59 < N < 92 

0,100 16 < N < 36 38 < N < 65 81 < N < 120 
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eliminate the correlation between residuals we had to find 

some GARCH models. The best models identified were: 

GARCH(1,2), TGARCH and Orthogonal GARCH. 

For expressing the current volatility as a function of the past 

volatility, we have also used EWMA models, giving more 

importance to the recent data. Estimating the volatilities and 

the correlations through EWMA(0.94), EWMA(0.92) and 

EWMA(0.90) we have calculated VaR for more levels of the 

persistence parameter λ. We have seen that the closer the value 

λ to unity, the higher the risk. 

For a better characterization of the extreme values found at 

the upper and lower tails we have applied the Extreme Value 

Theory, using the excess over a threshold method. In our study 

we have used the Generalized Pareto Distribution to represent 

the extreme values, after sorting the values and choosing the 

following thresholds: 0.5% and 1% and 5%. We have 

observed that the higher the threshold, the higher the risk. 

 
TABLE  V 

THE VAR ESTIMATIONS (FIRST SAMPLE - 30.09.2004 TO 30.09.2010) 

VaR model BET PX50 BUX SOFIX WIG20 

HS 0.018 0.021 0.016 0.022 0.019 

EWMA (0.94) 0.021 0.025 0.017 0.024 0.022 

EWMA (0.92) 0.019 0.022 0.015 0.021 0.018 

EWMA (0.90) 0.015 0.018 0.012 0.020 0.015 

GARCH(1,2) 0.023 0.020 0.018 0.025 0.024 

TGARCH 0.019 0.020 0.020 0.023 0.023 

Orthogonal Garch 0.017 0.019 0.022 0.025 0.019 

EVT (0.5%) 0.020 0.020 0.019 0.020 0.020 

EVT (1%) 0.016 0.018 0.017 0.019 0.018 

EVT (5%) 0.015 0.017 0.013 0.016 0.011 

 

Analyzing Table V it could be seen that on the 30.09.2004 – 

30.09.2010 period the most accurate model was the GARCH 

class for BET, BUX and SOFIX and EWMA model for PX50 

and WIG20. For the Romanian market the best models that 

reflect the risk was GARCH(1,2), followed by the EWMA  

(0.94) and EVT(0.5%). For the Czech market EWMA(0.025) 

model forecasts better the stock exchange market volatility, 

followed by EWMA(0.92) and Historical Simulation. For 

Hungary stock exchange market GARCH class is the most 

appropriate and within it the Orthogonal GARCH model is the 

best. On Bulgarian market GARCH class is on the first place, 

followed by EWMA and EVT. The Polish market risk could 

be better estimated by using EWMA models, followed by the 

GARCH class and by the EVT. As a common characteristic of 

these markets, on the period analyzed, it could be observed 

that EWMA, GARCH and EVT models perform better that the 

traditional Historical Simulation method. 

Within the second sample (Table VI), that reflects the 

modeling of the most recent data, the situation changes. EVT 

is the most appropriate econometric model to forecast the risk, 

while the Historical Simulation method could lead to large 

underestimates of risk, putting the investors into a risky 

position. For all stock indices the EVT highlight better the risk 

at the highest level of the threshold. The best GARCH models 

for BET, PX50 and SOFIX is GARCH(1,2), while for BUX 

and WIG20 is the Orthogonal GARCH. Analyzing the EWMA 

class it could be seen that it tends to underestimate the 

volatility, especially when the persistence parameter takes 

lower values, because of its incapacity to takes into account 

the extreme movements that took place on the market during 

this period. 
TABLE  VI 

VAR ESTIMATIONS (SECOND SAMPLE - 30.09.2008 TO 30.09.2010) 

VaR model BET PX50 BUX SOFIX WIG20 

HS 0.021 0.025 0.019 0.026 0.023 

EWMA (0.94) 0.025 0.030 0.020 0.029 0.026 

EWMA (0.92) 0.023 0.026 0.018 0.025 0.021 

EWMA (0.90) 0.018 0.021 0.014 0.024 0.018 

GARCH(1,2) 0.027 0.029 0.021 0.030 0.029 

TGARCH 0.023 0.024 0.024 0.027 0.027 

Orthogonal Garch 0.020 0.023 0.026 0.029 0.030 

EVT (0.5%) 0.033 0.033 0.027 0.036 0.034 

EVT (1%) 0.030 0.027 0.018 0.033 0.032 

EVT (5%) 0.024 0.020 0.015 0.032 0.029 

 

For testing the post efficiency of these methodologies we 

have used the back-testing, by simulating the stress scenarios 

for the least 245 days. We have applied the quadratic loss 

function approach, calculating how many times the VaR has 

been exceeded. For the first sample the best methods, which 

are in the minimum risk zone (VaR has been exceeded for no 

more that 4 times) are the GARCH models, followed by the 

EVT models and EWMA models. In the second sample the 

best methods from the post efficiency point of view are EVT 

and GARCH. EWMA models within the second sample is in 

the medium safety zone (between 4 and 9 violations of VaR). 

The method that failed mostly in accurately estimating the risk 

is the Historical Simulation method (between 11 and 15 

violations of VaR for all of the indices), as shown in Table 

VII: 

 
TABLE  VII 

BACK-TESTING RESULTS (QUADRATIC LOSS FUNCTION APPROACH) 

 BET PX50 BUX SOFIX WIG20 

 I II I II I II I II I II 

HS 8 12 6 13 10 11 8 15 14 15 

EWMA (0.94) 3 4 1 4 2 5 3 5 2 10 

EWMA (0.92) 2 4 1 4 3 5 4 6 4 7 

EWMA (0.90) 2 8 4 6 4 9 6 9 5 2 

GARCH(1.2) 1 2 1 2 2 3 1 2 3 4 

TGARCH 2 2 3 4 4 2 2 3 2 3 

Orthogonal 

Garch 

3 3 2 2 3 2 3 1 2 1 

EVT (0.5%) 2 1 3 2 2 1 3 1 3 2 

EVT (1%) 2 2 3 2 3 3 3 2 4 2 

EVT (5%) 2 2 4 4 3 3 3 2 4 3 

 

VI. CONCLUSION 

Analyzing some of the main indices of Central and Eastern 

European stock markets we wanted to highlight that only 

advanced VaR models such as Extreme Value Theory or 

GARCH models can adequately measure the risk of the capital 

markets and satisfy the requirements of the investors in periods 

characterized by extreme events. Also, in forecasting volatility 

on stock markets in crisis periods it should be used a shorter 

sample of data, the most recent one, in order to capture the 

large movements on the market. These estimations of risk 

could be taken into consideration by investors in order to 

fundament their portfolio investment decision regarding the 

titles listed on the Central and Eastern European stock 

markets. 
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