
 

 

  
Abstract—Interacting diffusion systems induced by finite-capacity 

effect is a typical diffusion model on networks. Its complexity 

influenced by structure and function has hardly been studied. Aimed at 
filling this gap, we introduce entropy to quantify such interacting 

process, and exhibit its strong dependence on topology and routing 
capacity. The analytical expressions are derived and convinced by 

simulations. Also, Maximum entropy principle provides an effective 

measure to design an optimal diffusion process. This will play a crucial 
role for inference problems emerging in the field of interacting 

dynamics on complex networks. 
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I. INTRODUCTION 

ntropy was first applied in thermodynamics, then ranging 

over statistical mechanics, information theory, dynamical 

system, etc [1-3]. As the uncertain quantity of a system, entropy 

is a key indicator representing the complexity. For the past few 

years, entropy was also introduced into the field of complex 

networks, which has been a hot topic in many fields, e.g., 

sociology, economics, transportation science, information 

technology, etc [4-12]. The main theoretical and empirical 

interest in the study of complex networks lies in understanding 

the relations between structure and function. Complex networks 

display complex structure generating positive entropy [3], based 

on such topology the complexity of dynamics can be observed 

but structure is not the only reason. 

Previous literatures on entropy in the field of complex 

network mainly focused on the structure characteristics, as well 

as the influence of the topology and the navigation rule in a 

diffusion process, etc. Authors in [13] show how to define the 

Shannon entropy of a network ensemble and how could it relate 

to Gibbs and Von Neumann entropies of network ensembles. 
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Further, several different entropy measures have been 

introduced in the context of complex networks [14-17] to 

quantify the complexity. Note that diffusion is one of the most 

common dynamic phenomena on complex networks, e.g. the 

propagation of information signals among various clients on the 

Internet [18], the congestion of vehicle flow on large traffic 

networks [19]. Actually, entropy can be used to characterize a 

diffusion process on a complex network, and successfully 

relates to the properties of function with the structure of the 

underlying network [20]. 

As a mature measure, entropy of a diffusion process is 

particularly suited to capture the interplay between structure and 

diffusion dynamics. Previous studies were performed by 

quantifying the complexity of network topology or an ordinary 

diffusion process in which the diffusing packets are 

non-interactive. In fact, the interaction among diffusing packets 

can have a dramatic effect on the properties of transportation 

inducing finite-capacity effect. Finite-capacity effect means the 

interactive influence among packets caused by the variable 

finite capacity of routers, which is motivated by the fact that 

real-world routers do not have enough capacity to store all the 

packets sent to them. Nevertheless, we still lack means to 

quantify the complexity of such complex diffusion systems. A 

precursory work is [21]. It is shown that the dynamics of 

interacting packets in a network system can be characterized by 

the zero range process (ZRP), and the corresponding stationary 

state has a factorized form. We note that interacting diffusion 

process can be optimized under the frame of congestion 

mechanism. However, according to the maximum entropy 

principle, it remains less explored on the features of an 

interacting diffusion process with maximal entropy, and how to 

design an optimal diffusion process under the frame of 

maximum entropy. 

Entropy rate introduced here is similar to the measure entropy 

to characterize such an interacting diffusion process, and to 

unveil the rich interplay between network topology and 

dynamics under the finite-capacity effect. A finite-capacity 

model is established by considering that the local topology and 

the variable capacity, two crucial elements for routers, are 

naturally coupled to control diffusing packets. In addition, a 

finite, undirected network with many packets interacting on it 

produces a transportation system. We reproduce the packet 

delivery process by making packets perform random hops in the 

light of local degree structure and finite-capacity effect, which 

jointly determine the dynamic properties of diffusion process. 
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In this context, we propose two rational definition formalisms 

of entropy rate based on the diffusion mechanism under the 

finite-capacity effect. The exact expressions of entropy rate 

versus γ  and δ  in the former formalism are deduced to reflect 
the rules between diffusion complexity and topology structure 

as well as variable capacity. Interestingly, two completely 

distinct results simulated by two formalisms, respectively, are 

observed; also, we will give reasonable discussions about this 

over the condensation mechanism. 

 

II. FINITE-CAPACITY MODEL 

We consider an undirected graph ( , )G V E= , where 

V {1,2, , }N= ⋯  is the set of nodes and 

{( , ) | , }E i j i j V= ∈ is the set of edges. The adjacent matrix 

of G  is ( )ij N NA a ×= , where ija  takes the value of 1 if there 

exists an edge between node i  and j , else takes the value of 0. 

We denote ik  as the degree of node i , i.e., the number of links 

of node i , can be given by jii j
k a= ∑ . 

The total M packets are randomly put into the network 

initially with the density /M Nρ = . We denote the mean 

occupation number of packets at each node as 1 2, , , Nm m m⋯ . 

The hopping rate of node i  is defined by 

( )i i iq m mδ= ,                                                                    (1) 

which reflects the transport capacity of node i . Here we set 

[0,1]δ ∈  as the capacity parameter. Each node of the network 

is girded with heterogeneous capacity. For instance, the larger 

the value of δ  is, the stronger the capacity of node is, which 
implies an active traffic state on the network. Actually, for a 

fixedδ , on the one node, transition efficiency decreases while 
the occupation number of packets increase, that is, the 

percentage of delivered packets decreases though the number of 

delivered number goes up. 

At one time step, whether one packet on the node i  can be 
transport or not depends on the hopping rate, if it can hop, then 

moves to one of its neighbors j  with a transition probability 

ji

ji

i

a

k
ω = .                                                                             (2) 

Such a transition probability corresponds to a classical random 

walk, and each packet chooses one neighbor node to move 

randomly. 

 

III. STATIONARY STATE OF A DIFFUSION PROCESS UNDER THE 

FINITE-CAPACITY EFFECT 

Under the effect of hopping rate and transition probability, 

M  packets will evolve to a stationary state. To deduce the 

analytical expression of stationary state, we write single-site 

weight ( )i if m  for node i  if there exist im  packets in the 

configuration 

' 0

( ) ,
( )

im

i
i i

m i

f m
q m

ω∞

=

=
′∏                                                         (3) 

where iω∞
 is the stationary state probability distribution of a 

single packet moving around the network with the transition 

probability jiω  without routing capacity-related consideration, 

and is given by i /i mm
k kω∞ = ∑  [23]. 

The mean occupation number of packets of node i  at the 
stationary state can be easily obtained by considering the ZRP 

dynamics. With respect to generating function 

0
( ) ( )m

i im
F z z f m

∞

=
= ∑ ,  

the mean occupation number of packets of node i  at the 
stationary state is given by the following equation [21]: 

ln ( )i im z F z
z

∂
=

∂
,                                                            (4) 

where z  is the fugacity, satisfied by z z≤ according to the 

convergence condition of infinite series, and the value is 

determined by requiring that the average occupation number of 

packets over the whole network is equal to the prescribed value 

: mii
M M=∑ . For a given network with degree 

distribution deg ( )P k , the number of nodes with degree 

k is deg ( )NP k . We rewrite the condition that determines z in 

terms of a sum of degree (instead of over nodes): 

degln ( ) ( )kk
z F z P k

z
ρ

∂
=

∂∑ , where we indicate that 

fugacity z  depends on the packet density ρ , and is a positive 
increasing function of ρ . 
 

IV. ENTROPY RATE OF A DIFFUSION PROCESS UNDER THE 

FINITE-CAPACITY EFFECT ON SCALE-FREE NETWORKS 

In ergodic theory, entropy indicates the minimum 

information a random event needs to confirm its consequence. 

People has found that entropy is an effective tool to characterize 

both the topology structure and dynamics on the complex 

networks. On the aspect of transportation, especially under the 

finite-capacity effect, to investigate the interaction between the 

topology and diffusion process comprehensively, we have set 

our model within interacting diffusion system, a practical model 

on the Internet, social networks, traffic, etc., locating on the 

scale-free network with power-law distribution deg ( ) ~P k k γ−
. 

Two rational formalisms of entropy rate are proposed to 

characterize complexity from different aspects. 

In some implication fields, for instance, WWW, cond-mat, 

traffic, etc., information guided by maximum entropy 

transportation benefits the communication far and widely. In the 
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following, we show the strong effect of topology and routing 

capacity to the entropy rate. Further, based on maximum 

entropy principle, various properties of networks are extracted 

to design optimal transport process. 

 

A. Entropy rate related to a formalism of pure diffusing 

state under the finite-capacity effect  

We define the entropy rate of an interacting diffusion process 

as 

,

( , , ) lni
ji ji

i j

m
h N

M
γ δ ω ω= −∑ ,                                 (5) 

where im  is the mean occupation number of packets of node i  

at the stationary state, and jiω  is the transition probability 

defined in (2). 

For a diffusion process with interacted behavior on the 

scale-free networks with degree distribution deg ( ) ~P k k γ−
, 

the distribution of packets at the stationary state following ZRP 

has been obtained [22]. A complete condensation occurs on 

condition that  

1/ ( 1)cδ δ γ≤ = − .  

Based on this critical point cδ , we discuss three cases as 

follows: 

1. The case 0δ = . For this case, ( ) 1i iq m = means each 

node can transport only one packet at each time steps, implying 

a very low capability of each node. Since a singular point of z  
exists on the hubs, it is reasonable to separate entropy rate $h$ 

into two parts, one is the entropy rate nh  on normal nodes with 

degree lower than the maximum degree, denoted by                       

max{ | , }iS i i V k k= ∈ < , the other is the entropy rate sh  on 

hubs whose degree is maxk . nh  and sh  form a whole entropy 

rate as n sh h h= + . By using ZRP, the mean occupation 

number of normal nodes max/ ( )i S i im k k k∈ = − , while 

hubm Nρ=  on the hubs. 

According to (5), 
nh can be given by 

max

1
lni

n i

i S i

k
h k

N k kρ ∈

=
−∑ .                                                 (6) 

The sum calculated over the nodes are replaced by that over the 

degree, then 

max

deg

max

1
ln ( )n

k k

k
h k P k

k kρ <

= ⋅
−∑ . 

We get in the continuum-degree approximation, 

max
1

1
max

max

1

1 ln

1
   ln ,

k

n

l l

l

k k
h dk

k k

k kk

γ

ρ

ρ

−

∞
−

=

=
−

=

∫

∑
                                                        (7) 

where 

max

deg
1

ln ln ( )dk.
k

l lk k k k P k= ⋅∫  

The entropy rate on the normal nodes leads to 

1 1

max max max 2
1 1

max2
1

1 1 1 1
ln

1 1
      ,

n

l l

l

l

h k k k
l l

k
l

γ γ

ρ ρ

ρ

∞ ∞
− −

= =

∞
−

=

= −

+

∑ ∑

∑
                       (8) 

for large l . Here, for a scale-free network, maxk  scales as 

1/( 1)~ N γ −
, which can be easily obtained by 

deg ( ) 1
Mk

N P k dk
∞

=∫ . On the other hand, within three 

summation of infinite series, we approximate 
1

1
~ ln

l

n
l

∞

=
∑  

with n → ∞ , 
2

2
1

1
/ 6

l l
π

∞

=

=∑  by using flourier series 

expansion, and max2
1

1 l

l

k
l

∞
−

=
∑  converges by Weierstrass test 

even can be approximated by termwise differentiation as 
1/(1 ) 1/(1 ) 1/(1 )(1 ) ln(1 )N N Nγ γ γ− − −− − + . 

Hence, entropy rate of the normal nodes as a function of γ  
writes 

1

1 1

1 12
1 1 1

1 1
( , ) (ln )(ln )

( 1)

1
                (1 ) ln(1 ) ,

6

nh N N N n N

N N N

γ

γ γ

γ
ρ γ ρ

π
ρ ρ

−
− −

− −
− − −

= +
−

− + − −

 

(9) 

withn → ∞ . 
On the other hand, 

sh  can be calculated by (5) and changes 

by γ  as  

max max

1

1

( , ) ln

1
              = ln .

1

sh N Nk k

N N

γ

γ

γ

γ

−

−
−

=

−

                                          (10) 

Then the analytical expression of the entropy rate of the 

interacting diffusion process with 0δ = , as a function ofγ , 
combining nh  in (9) and sh  in (10), forms a whole as 
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1

1 1

1 12
1 1 1

1

1

( , ) ( , ) ( , )

1 1
             = (ln )(ln )

( 1)

1
               (1 ) ln(1 )

6

1
                + ln

1

n sh N h N h N

N N n N

N N N

N N

γ

γ γ

γ

γ γ γ

ρ γ ρ

π
ρ ρ

γ

−
− −

− −
− − −

−
−

= +

+
−

− + − −

−
，

.                                  

(11) 

with n → ∞ . Further, divergent ln n  in (9) implies that 

entropy rate diverges for arbitrary γ  in the case 0δ = . 

2. The case 1δ = . This case corresponds to systems with 

noninteracting feature that M packets play random walk 

independently. Thus the mean occupation number of packets at 

the stationary distribution simplifies to /i i im M k kω ρ∞= = , 

here k  is the average degree of the scale-free network. Then 
entropy rate reads 

1
lni i

i

h k k
kN

= ∑ . 

Replace the sum over the node with the sum over the degree, 

and substitute the summation for integration, 

(2 )/( 1)

(2 )/( 1)

2 2

1
( , ) ln

( 1)(2 )

1 1
               .

(2 ) (2 )

h N N N
k

N

γ γ

γ γ

γ
ρ γ γ

ρ γ ρ γ

− −

− −

=
− −

− +
− −

     

(13) 

Note that entropy rate diverges as 
(2 )/( 1)( )O N γ γ− −

 

for1 2γ< < , with N → ∞ . Conversely, when 2γ > , the 

entropy rate is finite in the limit N → ∞  and equal to 

2

1

(2 )
h

ρ γ
=

−
.                                                                  (14) 

3. The general case: 0δ > . For the general caseδ , there 
exists a critical point  

1/ ( 1)cδ γ= −   

where the distribution of packets at the stationary state 

undergoes a transition from a relative homogeneous state to an 

ultra inhomogeneous state. Further, for a given δ , the whole 
nodes should be divided into two groups according to a 

crossover degree 
ck , which takes the value 

1 /

max
c

ck k δ δ−=  for 

cδ δ<  and max[ln ]ck k=  for 
cδ δ= , then the mean 

occupation number of packets at those nodes locating in the 

same group get the same expression [22]. Due to the critical 

point cδ  divides the phase diagram into two distinct regions, in 

the following part, we discuss three cases according to different 

values ofδ . 
When cδ δ< , we obtain two groups of nodes according to 

1 /

max
c

ck k δ δ−=  denoted by sets  

{ | , }i cB i i V k k= ∈ <  , 

{ | , }i cC i i V k k= ∈ > ,  

1 /

max/ c

i B im k k
δ δ−

∈ = ,  

1/ 1/1/

max/ c

i C im k k δ δδ −
∈ = .  

We deduce the expression of entropy rate in these two groups, 

respectively, 

1/

1 / 1/ 1/

max max

1 1
ln + ln .

c c
i i i i

i B i C

h k k k k
Mk Mk

δ
δ δ δ δ− −

∈ ∈

= ∑ ∑   (15)                                   

Replace the sum over the nodes with the sum over the degree, 

and get in the continuum-degree approximation, 

max

1

1 / 1
max

1/

1/ 1/

max

1
ln

1
      + ln .

c

c

c
c

k

k

k

h k kdk
k

k kdk
k

γ
δ δ

δ γ
δ δ

ρ

ρ

−
−

−
−

= ∫

∫
                            (16) 

Write the analytical expression of entropy rate with
cδ δ< , 

( 1) 1

( 1) 1

2 2

1/( 1)

2 2

1
( , , ) ln

( 1)( 2)

1 1
                    +

(1 1/ ) ( 2)

1 1
                    +

( 2) (1 1/ )

1
                    + ln .

( 1)(1 1/ )

h N N N

N

N

N

δ γ

δ γ

δ γ

δ
γ δ

ρ γ γ

ρ γ δ ρ γ

ρ γ ρ γ δ

ρ γ γ δ

− −

− −

− −

−
=

− −

 
− − + − 

−
− − +

− − +
                                                                                             (17) 

When N → ∞ , the entropy rate in scale-free network with 
1/ 1γ δ> +  diverges as

( 1) 1~ ( ln )h O N Nδ γ − −
. On the 

other hand, when 1/ 1γ δ≤ + , the entropy rate in the limit 

N → ∞  diverges as (ln )O N . 

When cδ δ= , i.e., 1/ ( 1)δ γ= − . max[ln ]ck k=  divides 

nodes into two groups 
*B  and

*C , also,    

   
* { | , }i cB i i V k k= ∈ <  

* { | , }i cC i i V k k= ∈ > ,   

* max/ [ln ] c

ii B
m k k

δ
∈

=  , 

*

1/

max/ lnc

ii C
m k kδ

∈
= , 

 then 

* *

1/

max max

1 1
ln + ln .

(ln ) ln

c

c

i i
i i

i B i C

k k
h k k

M k M k

δ

δ
∈ ∈

= ∑ ∑    (18) 
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By some calculations, we obtain 

max

1

1
max

1

max

1
ln

(ln )

1
      + ln .

ln

c

c

c

k

k

k

h k kdk
k

k kdk
k

γ
δρ

ρ

−

−

= ∫

∫
                                    (19) 

We can write the analytical expression of entropy rate with 

cδ δ=  as 

1

1/( 1)
1/(1 )

2

(3 )/( 1)

1

2

1 ln
( , ) (ln ) ln

(2 ) 1

( 1) 1
               + (ln ) ln

(2 ) 2 ( 1)

( 1) 1 ln
              (ln ) .

(2 ) 2 1

N
h N N

N N

N
N

γ
γ

γ γ

γ
ρ γ γ

γ
ρ γ ρ γ

γ
ρ γ ρ γ

−

−
−

− −

−

 
=  − − 

−
+

− −

 −
− −  − − 

                                                                                             (20) 

Let N → ∞ , entropy rate in the above expression diverges as 
(3 )/( 1)~ ((ln ) )h O N γ γ− −

for1 2γ< < , while 2γ ≥  entropy 

rate in scale-free network diverges as (ln )O N . 

When
cδ δ> , the mean occupation number of packets of 

each node has a same expression
1/

i im k
δ= , then, h  can be 

calculated by (5) as 

1/1
lni i

i

h k k
M

δ= ∑ .                                                         (21) 

After some calculations, 

max 1/

1

1
ln .

k

h k kdkδ γ

ρ
−= ∫                                               (22) 

One can obtain that 

1/( ( 1)) 1

1/( ( 1)) 1

2

2

1
( , , ) ln

( 1)(1 1/ )

1
                   

(1 1/ )

1
                   .

(1 1/ )

h N N N

N

δ γ

δ γ

γ δ
ρ γ γ δ

ρ γ δ

ρ γ δ

− −

− −

=
− − +

−
− +

+
− +

                                                             

(23) 

Entropy rate in the above expression diverges as 
1/( ( 1) 1~ ( ln )h O N Nδ γ − −

 in the scale-free network 

with 1/ 1γ δ≤ + , in the limit N → ∞ . Conversely, when 
1/ 1γ δ> + entropy rate is a finite value in the thermodynamic 

limit N → ∞  and equal to 

2

1
( , )

(1 1/ )
h γ δ

ρ γ δ
=

− +
.                                            (24) 

Our definition in (5), actually, is a weighted average over the 

entropy rate of each node. Specially, this entropy rate of each 

node is indeed with no relationship with the topology parameter 

γ  or the finite-capacity parameter $\delta$, just related to the 
degree of its node writes ln ik . Thus, hubs, those nodes with the 

maximum degree, have the maximum entropy rate beyond the 

other nodes. Based on this, the maximum entropy rate of the 

diffusion process requires that the macroscopic fraction of 

packets locate at the hubs. Our previous work in [24] showed 

that the mean occupation number of packets at the hubs 

 

                                            Fig. 1 Mean occupation number 
im versus degree k. The capacity parameter δ  takes 0 in (a), 0.2 in (b),  

0.8 in (c), 1in (d) respectively. Simulations on different scales of scale-free networks with 3γ = . 
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increases by δ  decreasing, which can be found in Fig. 1. In this 
figure, we focus on the top of the simulated points, the mean 

occupation number of packets at hub hubm in each subfigure (a), 

(b), (c), and (d). It is shown that hubm gets the highest value 

at 0δ = , while 1δ = induces the lowest
hubm . Based on this, 

we can conclude that entropy rate is a decreasing function ofδ .  
To confirm the theoretical results, we have illustrated the 

relationship between the entropy and the routing capacity by 

Monte Carlo simulations on scale-free networks with power-law 

degree distribution deg ( )P k , exponent 3γ = ,
310N = , 

and 2ρ = . The simulated results are plotted in Fig. 2. It is 

shown that entropy rate h is a decreasing function of 

parameterδ , which confirms to the theoretical results. 
Further, to confirm how entropy rate changes by the size of 

network, we simulated on some scale-free networks with 

different size but characterized by the same exponent 

3γ = and constructed by the Molloy-Reed algorithm. As 

shown in Fig. 3, we select three typical value of parameterδ . 
Specifically, according to the critical condition c 0.5δ = where 

a complete condensation occurs, 0δ = corresponds to a 

system showing an extreme situation that the capacity of router 

quite low inducing condensation, meanwhile, 0.4δ = is also 

lower than cδ producing condensation, but 0.8δ = implies a 

free traffic flow of the delivering packets.  From Fig. 3, 

obviously, a series of simulated points with 0δ = locate on the 

top of the graph that coincides with the main result in Fig. 2. 

Intuitively, entropy rate h increases by N . When systems 

exhibit condensation, the increasing of N  affects entropy rate 
observably, however, very tiny changes can be found at 

0.8δ = . Thus, condensation reinforces the influence of the 

size of networks on entropy rate.  

B. Entropy rate related to a formalism of multi-state under 

the finite-capacity effect 

We have addressed an entropy rate formalism featured that 

the total probability space of diffusing behavior of one packet 

on node i  was formed by ik  possibilities contributed by its ik  

neighbors. Here, we wonder if the staying state is included, that 

is, the total probability space at node i  is formed by 1ik +  

possibilities, summing up to 1, the entropy rate will be the same 

or different from the former formalism. We define the 

corresponding entropy rate formalism, and it still has 

relationship with γ  andδ , as follows: 

,

( , , ) lni
ji ji

i j

m
h N

M
γ δ π π= −∑ ,                                        (25) 

where 
1 /ji ji i ia m kδπ −=  for i j≠ , and

11ji imδπ −= − , 

otherwise. 

A number of simulations are used to study how the entropy 

rate changes by the scale-free topology and finite-capacity 

effect. To compare with the results in the above section, we 

simulate under the same conditions in Fig. 2 and Fig. 3, such as 

both on the scale-free network with 3γ = constructed by 

Molloy-Reed algorithm, the density of packets takes 2ρ = , 

packets distribute randomly on the network and follow the same 

strategy to diffuse. 

Similarly, to investigate how entropy rate changes byN , we 

pick out the same three value of δ with fig. 3.  Differently, as 
shown in fig. 4, although a complete condensation occurs or not 

occurs in the interacting diffusion process, N can hardly 

fluctuate entropy rate apparently.  

In Fig. 5, we find a completely different line of simulated 

results from the results in Fig. 2, although the question is the 

same. In the latter formalism, since the staying state is 

considered in the entropy rate of each node, entropy rate 

Fig. 2 Entropy rate h  of the first formalism in (5) versus δ  at 
3γ = , 

310N =  on the scale-free networks constructed by the 

Molloy-Reed algorithm. 

Fig. 3 Entropy rate h  of the first formalism in (5) versus N on the 

scale-free network with exponent 3γ = constructed by the 

Molloy-Reed algorithm. 
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changes by δ increasingly for a long range and then decreases. 
Meanwhile, the value of entropy rate in Fig. 5 is lower than the 

value in Fig. 2 collectively.  

Analytically, when δ is lower, packets tend to condense to 
hubs leading to an over-loaded situation of hubs [24], 

consequently, staying state becomes the “most probable” choice, 

this “most probable” induces quite low entropy rate. Thus, when 

the value of δ  is larger, the effect of condensation becomes 
weak so that entropy rate increases until a peak value appears. 

Significantly, this peak is the best point that a balance between 

staying state and diffusing state is achieved; further, this peak 

implies an efficient diffusion process characterized by the 

maximum entropy. During the optimization of a class of 

interacting diffusion process to be efficient in delivering 

information packets via changing routing capacity, it is 

important to get this peak value. And then the entropy rate 

decreases, since the balance between staying state and diffusing 

state is broken. Thus, the maximum entropy implies a balance 

between delay and diffusion state under the finite-capacity 

effect. 

 

V. CONCLUSION 

We have proposed a class of systems with finite-capacity 

effects. To reveal its diffusion complexity, entropy rate was 

introduced and offered a universal formalism for characterizing 

such diffusion processes. Two crucial elements, the network 

topology controlled by exponent γ  and the finite-capacity 
effect with parameterδ , decide the entropy together. We have 
defined two rational formalisms of entropy rate, analyzed and 

simulated the influence of parameters γ  and δ  to the entropy 
rate. Interestingly, there are absolutely distinct results of two 

formalisms of entropy rate as plotted in Fig. 2 and Fig. 5, 

implying that finite-capacity effect can have a powerful effect 

on entropy of such diffusion process. To sum up, in the range of 

systems with finite-capacity effect, we have proposed a 

universal and unified framework to analyze and describe an 

interacting diffusion process, and its complexity can be well 

characterized. 
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