



Abstract—Artificial bee colony (ABC) algorithm is successfully

used for many hard, mostly continuous, optimization problems. There

is a way to extend standard ABC algorithm to constrained problems.

In this paper an improved version of the artificial bee colony

algorithm adjusted for constrained optimization problems is

presented. It uses Deb’s rule. This modified algorithm has been

implemented and tested on four standard engineering constrained

benchmark problems which contain discrete and continuous

variables. Our results were compared to the results obtained by

simple constrained particle swarm optimization algorithm (SiC-PSO)

which showed a very good performance when it was applied to the

same problems. Our results are of the comparable quality with faster

convergence.

Keywords—Constrained optimization, Swarm intelligence,

Artificial bee colony optimization.

I. INTRODUCTION

ONSTRAINED optimization problems have numerous

applications. Engineering design is one of the scientific

fields in which constrained optimization problems frequently

arise [1]. These types of problems normally have mixed

(continuous and discrete) design variables, nonlinear objective

functions and nonlinear constrains. Constrains are very

important in engineering design problems. They are usually

imposed in the statement of the problems and sometimes are

very hard to satisfy, which makes the search difficult and

inefficient.

Different deterministic as well as stochastic algorithms have

been developed for solving constrained optimization problems.

Deterministic approaches such as sequential quadratic

programming methods and generalized reduced gradient

methods [2], [3], [4] are inflexible to adapt the solution

algorithm to a given problem. Generally a given problem is

modeled in such a way that a classical algorithm can handle it

Manuscript received January 30, 2011.

The research was supported by the Ministry of Science, Republic of

Serbia, Project No. III 44006

M. Tuba is with the Faculty of Computer Science, Megatrend University,

Belgrade, Serbia, e-mail: tuba@ieee.org

I. Brajovic is with the Faculty of Mathematics, University of Belgrade,

Serbia, e-mail: ivona.brajevic@googlemail.com

M. Subotic is with the Faculty of Computer Science, Megatrend

University, Belgrade, Serbia, e-mail: milos.subotic@gmail.com

[5]. This often requires making several assumptions which

might not be easy to justify in many situations. Therefore their

applicability is limited. On the other hand, stochastic

optimization algorithms such as genetic algorithms, simulated

annealing algorithms, evolution strategies, evolutionary

programming and particle swarm optimization (PSO) do not

make such assumptions and they have been successfully

applied for solving constrained optimization problems during

the past few years [1], [6], [7], [8], [9], [10].

Karaboga has described an artificial bee colony (ABC)

algorithm based on the foraging behavior of honey bees for

numerical optimization problems [11]. Karaboga and Basturk

have compared the performance of the ABC algorithm with the

performance of other well-known modern heuristic algorithms

such as genetic algorithm (GA), differential evolution (DE),

particle swarm optimization on unconstrained and constrained

problems [12], [13]. It has been shown that the ABC algorithm

can be efficiently used for solving unconstrained and

constrained optimization problems. In this work, our approach

to the ABC algorithm for constrained optimization problems,

called SC-ABC (Simple Constrained ABC), was applied to

real engineering problems existing in the literature and its

performance was compared with the performance of Simple

Constrained Particle Swarm Optimizer (SiC-PSO) [1]. SiC-

PSO algorithm showed a very good performance when it was

applied to several engineering design optimization problems.

This paper is organized as follows. Section 2 describes the

ABC algorithm for unconstrained and constrained problems.

Section 3 presents our proposed approach. Section 4 describes

four benchmark problem formulations. Section 5 presents the

experimental setup adopted and provides an analysis of the

results obtained from our empirical study. Conclusions and

some plans for future research are provided in Section 6.

II. ARTIFICIAL BEE COLONY ALGORITHM

A. The ABC Algorithm Used for Unconstrained Optimization

Problems

In ABC algorithm [11], [12], [13], [14], [15] for the

unconstrained optimization, the colony of artificial bees

consists of three groups of bees: employed bees, onlookers and

scouts. One half of the colony consists of the employed

artificial bees and the other half includes the onlookers. All

Performance of the

improved artificial bee colony algorithm on

standard engineering constrained problems

Ivona Brajevic, Milan Tuba, and Milos Subotic

C

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 135

bees that are currently exploiting a food source are known as

employed and for every food source, there is only one

employed bee. The employed bees exploit the food source and

they carry the information about food source back to the hive

and share this information with onlooker bees. Onlooker bees

are waiting in the hive for the information to be shared by the

employed bees about their discovered food sources and scouts

bees will always be searching for new food sources near the

hive. Employed bees share the information about food sources

by dancing in the dance area inside the hive. The dance is

dependent on the nectar content of food source just exploited

by the dancing bee. Onlooker bees watch the dance and choose

a food source according to the probability proportional to the

quality of that food source. Therefore, good food sources

attract more onlooker bees compared to bad ones. The

employed bee whose food source has been abandoned by the

bees becomes a scout. Scout bees can be visualized as

performing the job of exploration, whereas employed and

onlooker bees can be visualized as performing the job of

exploitation.

Each food source is a possible solution for the problem and

the nectar amount of a food source represents the quality of the

solution represented by the fitness value. At the first step, the

ABC generates a randomly distributed initial population of SN

solutions, where SN denotes the number of food source

positions which is equal to number of employed bees. Each

solution Xi (i = 1, 2, ..., SN) is a D-dimensional vector and D

is the number of optimization parameters. After initialization,

the population of the positions (solutions) is subjected to

repeated cycles of the search processes of the employed bees,

the onlooker bees and the scout bees. Maximum cycle number

MCN is one of the four control parameters in the ABC

algorithm.

In each iteration, every employed bee determines a food

source in the neighborhood of its current food source and

evaluates its nectar amount (fitness). The i-th food source

position is represented as),...,,(21 iDiii xxxX  .)(iXF

refers to the nectar amount of the food source located at iX .

After watching the dancing of employed bees, an onlooker bee

goes to the region of food source at Xi with the probability:





SN

k

k

i
i

XF

XF
p

1

)(

)(
 (1)

In order to produce a candidate food position from the old

one in memory, the ABC uses the following expression:

)(kjijijijij xxxv   (2)

where },...,2,1{ SNk and },...,2,1{ Dj are randomly

chosen indexes where k has to be different from i and ij is a

random number between [-1, 1].

After each candidate source position vij is produced and

then evaluated by the artificial bee, its performance is

compared with that of its old one and a greedy selection

mechanism is employed as the selection operation between the

old and the new candidate. Otherwise, if the new food source

has an equal or better nectar than the old source, it is replaced

with the old one in the memory.

In ABC algorithm, providing that a position cannot be

improved further through a predetermined number of cycles,

the related food source is assumed to be abandoned. The value

of predetermined number of cycles is an important control

parameter of the ABC algorithm, which is called “limit for

abandonment”. Assuming that the abandoned source is

),...,,(21 iDiii xxxX  , the scout discovers a new food source

to replace Xi. This operation can be defined as:

)(iiiij lulx   (3)

where },...,2,1{ Dj , li and ui are the lower and upper

bound of the parameter ijx and  is a random number in the

range [0, 1). It can be concluded from the above explanation

that there are four control parameters used in the ABC: the

number of food sources which is equal to the number of

employed or onlooker bees (SN), the value of limit, the

maximum cycle number (MCN).

The pseudo code of the ABC algorithm is:

1. Initialize the population solutions xij, i=1,2,…,SN,

j=1,2,…,D by Eq. (3)

2. Evaluate fitness value of the population

3. cycle = 1

4. repeat

5. Produce new solutions vij for the employed bees by using

Eq. (2) and evaluate them

6. Apply the greedy selection process

7. Calculate the probability values Pij for the solutions xij by

Eq. (1)

8. Produce the new solutions vij for the onlookers from the

solutions xij selected depending on Pij and evaluate their

fitness value

9. Apply the greedy selection process

10. Determine the abandoned solution for the scout, if

exists, and replace it with a new randomly produced

solution xij by Eq. (3)

11. Memorize the best solution achieved so far

12. cycle = cycle + 1

13. until cycle = MCN

B. The ABC Algorithm for Constrained Optimization

Problems

General constrained optimization (CO) problem is to find x

so as to

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 136

 minimize f(x), n
n Rxxx ),...,(1

where SFx  . The objective function f is defined on the

search space nRS  and the set SF  defines the feasible

region. The search space S is defined as an n-dimensional

rectangle in nR . The variable domains are limited by their

lower and upper bounds:

iii uxl  , ni 1

whereas the feasible region SF  is defined by a set of m

additional constraints (0m):

,0)(xgk for qk ,...,1

 ,0)(xh j for mqj ,...1

At any point Fx , the constraints gk that satisfy gk(x)=0

are called the active constraints at x. By extension, equality

constraints hi are also called active at all points of S [16]. Two

methods are often used to handle constraints. One is a variable

restriction method which restricts the solution space to the

solutions which conform to the constraints. The second one is

a penalty function method which allows solutions which

violate the constraints at the expense of a suitably defined

penalty function. However, determining appropriate penalty

coefficients is not an easy task, it must be estimated based on

the relative scaling of the distance metrics of multiple

constraints, the difficulty of satisfying a constraint, and the

seriousness of a constraint violation, or be determined

experimentally. Although the adaptive penalty strategies

proved to be effective in some cases, they are still quite

problem-dependent. It was also noticed that if the values of the

objective function were very large, then small differences

between objective values were not easily identified, and this

was undesirable, a leading cause of premature convergence in

evolutionary computation [17].

In order to handle the constraints of this problem, the ABC

algorithm employs Deb’s rules [18], which are used instead of

the greedy selection employed between vi and xi in the version

of the ABC proposed for unconstrained optimization

problems. The method uses a tournament selection operator,

where two solutions are compared at a time by applying the

following criteria:

• Any feasible solution satisfying all constraints is

preferred to any infeasible solution violating any of the

constraints

• Among two feasible solutions, the one having better

fitness value is preferred

• Among two infeasible solutions, the one having the

smaller constraint violation is preferred

Because initialization with feasible solutions is very time

consuming process and in some cases it is impossible to

produce a feasible solution randomly, the ABC algorithm does

not consider the initial population to be feasible. Structure of

the algorithm already directs the solutions to feasible region in

running process due to the Deb’s rules employed instead of

greedy selection. Scout phase of the algorithm provides a

diversity mechanism that allows new and probably infeasible

individuals to be in the population. Beside of Deb's rules, the

second change in ABC for CO problems is in order to produce

a candidate food position from the old one in memory. The

adapted ABC algorithm uses the following expression:

otherwise

MRRif

x

xxx
v

j

ij

kjijijij

ij







 


,

,)(
 (4)

where },...,2,1{ SNk and },...,2,1{ Dj are randomly

chosen indexes where k has to be different from i and ij is a

random number between [-1, 1]. Rj, },...,2,1{ Dj , is a

randomly chosen real number in the range [0,1]. MR, the

modification rate, is a control parameter that controls whether

the parameter xij will be modified or not. In adapted ABC

algorithm, artificial scouts are produced at a predetermined

period of cycles for discovering new food sources randomly.

This period is another control parameter called scout

production period (SPP) of the algorithm. At every SPP cycle,

it is checked if there is an abandoned food source or not. If

there is, a scout production process is carried out.

III. PROPOSED ALGORITHM: SC-ABC

In our proposed approach (called Simple Constrained

Artificial Bee Colony, or SC-ABC) as in the ABC for

constrained problems, algorithm uses Deb’s rules instead of

the greedy selection in order to decide what solution will be

kept. The expressions for evaluating probability Eq. (1), for

producing a candidate food position Eq. (2) and for

initialization new food sources Eq. (3) stayed the same as in

the version of the ABC proposed for unconstrained

optimization problems.

SC-ABC algorithm has changed the initialization phase and

the scout phase compared to the ABC. In the initialization

phase only the first initialization of food sources is completely

random. In other initialization phases the first new food source

is the food source from the previous run of the algorithm

which has the best fitness value. In other words, the runs of the

SC-ABC algorithm are not completely independent. Therefore,

exploitation of the good sources was increased. In order to

increase the exploration the scout bee’s phase was changed. In

the scout phase the algorithm checks every possible solution. If

the solution is not feasible, that food source is replaced with a

new randomly produced solution.

The pseudo code of the SC-ABC algorithm is:

1. Initialize the population solutions xij, SNi ,...,2,1 ,

Dj ,...,2,1 by Eq. (3) for the first run. For every other

run, if exists, x1j, Dj ,...,2,1 is the best solution from

previous run and x1j, i = 2,...,SN, j = 1,...,D are randomly

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 137

produced solutions by Eq. (3)

2. Evaluate fitness value of the population

3. cycle = 1

4. repeat

5. Produce new solutions vij for the employed bees by using

Eq. (2) and evaluate them

6. Apply selection process based on Deb’s method

7. Calculate the probability values Pij for the solutions xij by

Eq. (1)

8. Produce the new solutions vij for the onlookers from the

solutions xij selected depending on Pij and evaluate their

fitness value

9. Apply selection process based on Deb’s method

10. Determine the abandoned feasible solution for the

scout, if exists, and replace it with a new randomly

produced solution xij by Eq. (3)

11. Every infeasible solution replace with randomly

produced solution xij by Eq. (3)

12. Memorize the best solution achieved so far

13. cycle = cycle + 1

14. until cycle = MCN

The original ABC can be applied only to the continuous

problems. However, the method can also be expanded to the

discrete problems using discrete numbers. The state variables

were treated in the SC-ABC as follows: for continuous

variables, initial values were generated randomly between

upper and lower bounds of the specification values. The value

was also modified in the employed and onlooker bee’s phases

between the bounds. For discrete variables, they could be

handled in Equations (2) and (3) with a small modification,

i.e., as though they were continuous with nearest available

discrete values then being chosen. In that way, both continuous

and discrete numbers can be handled by the algorithm with no

inconsistency.

IV. BENCHMARK PROBLEMS

Proposed approach to Artificial Bee Colony Algorithm for

constrained optimization problems (SC-ABC) was applied to

four numerical examples: welded beam design optimization

problem, pressure vessel design optimization problem,

tension/compression spring design optimization problem and

speed reducer design optimization problem [1]. These non-

linear engineering design problems have discrete and

continuous variables. Discrete variables are used in many ways

such as the representation of the set of standard sized

components, the decision on the number of identical parts or

the choice between different design options. For example, the

number of teeth on pinion of a speed reducer are integer

variables, the spherical head thickness pitch and the shell

thickness of a pressure vessel are discrete variables. The

benchmark problems represent optimization situations

involving discrete and continuous variables that are similar to

those encountered in everyday mechanical engineering design

tasks.

A. Welded beam design optimization problem

The problem consists in dimensioning a welded steel beam

and the welding length so as to minimize its cost subject to

constraints on shear stress,  , bending stress in the beam,  ,

buckling load on the bar, Pc, end deflection of the beam,  ,

and side constraints [1], [19]. The beam has a length of 14 in.

and 6000 lb. force is applied at the end of the beam. There are

four continuous variables: x1, x2, x3, x4, which in structural

engineering are commonly symbolized by the letters shown in

Fig. 1 (h,l,t,b). The design variables are thickness of the weld

h, length of the weld l, width of the beam t, and thickness of

the beam b.

Fig.1: The Welded Beam design structure

The mathematical model of the problem is:

Minimize

)14(048110104711)(2432
2

1 +xxx.+xx.Xf  (5)

subject to:

 0)(max  -txt(x)c1

0)()(max2   -xxc

0)(413  -x xxc

05)14(048110104710)(243
2

14  -+xxx.+x.xc

0125.0)(15  -x xc

0)()(max6   -xxc

0)()(7  xP-Pcxc

The important stress conditions which were used in

mathematical model is Weld Stress - t(x). The weld stress has

two components. They are t1 - primary stress and t2 -

secondary stress. M is the moment which is created by Force

(F). J is polar inertia moment. This parameters are defined as

follows:

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 138

 2
2

2212
1

2

2
)(t

R

xtt
txt 

21
1

2 xx

P
t 

J

MR
t 2

)
2

(2x
LPM 

2
31

2
2

24







 


xxx
R



































 


2
31

2
2

21
212

22
xxx

xxJ

Bar bending stress -)(x is given as follows:

2

34

6
)(

xx

PL
x 

Bar deflection -)(x is given as follows:

3
34

34
)(

xEx

PL
x 

Bar buckling load is given as follows:

)
42

1(
36/013.4

)(3

2

6
4

2
3

G

E

L

x

L

xEGx
xPc 

The material properties and constraint values like shearing

modulus, young's modulus, etc. used above are given as

follow: P=6000, L=14, 25.0max  , 61030 E ,

61012 G , tmax=13600, 30000max  .

The bounds are: 21.0 1x , 101.0 2  x , 1031.0  x and

21.0 1x .

Best solution:

)20573.0,036624.9,470489.3,20573.0(*x

 where 724852.1*)(xf .

B. Pressure Vessel design optimization problem

This example is to design a compressed air storage tank

with a working pressure of 3000 psi and a minimum volume of

750 ft
3
 [1], [17]. The schematic of a pressure vessel is shown

in Fig.2. A cylindrical vessel is capped at both ends by

hemispherical heads. Using rolled steel plate, the shell is made

in two halves that are joined by two longitudinal welds to form

a cylinder. Each head is forged and then welded to the shell.

Let the design variables be denoted by the vector

X=[x1,x2,x3,x4]
T
, where x1 is the spherical head thickness, x2 is

the shell thickness, x3 and x4 are the radius and length of the

shell, respectively. The objective is to minimize the

manufacturing cost of the pressure vessel. The manufacturing

cost of pressure vessel is a combination of material cost,

welding cost and forming cost. The design variables x1 and x2

have to be integer multiples of 0.0625 inch which are the

available thickness of rolled steel plates. The radius x3 and the

length x4 are continuous variables.

Fig.2: Pressure Vessel design

The mathematical model of the problem is:

Minimize

4
2

1
3

32

3
2

1431

1661.37781.1

84.196224.0)(

xxxx

xxxxxXf




 (6)

subject to:

00193.0)(311  xxxc

00954.0)(322  xxxc

01296000
3

4
)(3

34
2

33  xxxxc 

0240)(44  xxc

where the bounds are: 0625.0990625.01 1  x ,

0625.0990625.01 2  x and 200,10 43  xx

Best solution:

)636596.176,098446.42,4375.0,8125.0(*x

where 714335.6059*)(xf .

C. Tension/compression spring design optimization problem

This problem minimizes the weight of a

tension/compression spring, subject to constraints of minimum

deflection, shear stress, surge frequency, and limits on outside

diameter and on design variables [1], [10], [20]. There are

three continuous variables: the wire diameter x1, the mean coil

diameter x2, and the number of active coils x3. The schematic

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 139

of a tension/compression spring is shown in Fig.3.

Fig.3: Tension/Compression Spring

The mathematical model of the problem is:

Minimize

 2
2

13)2()(xxxXf  (7)

subject to:

0
71785

1)(
4

1

3
3

2
1 

x

xx
xc

01
5108

1

12566

4
)(

1
4

12
3

1

21
2

2
2 






xxxx

xxx
xc

0
45.140

1)(

3
2

2

1
3 

xx

x
xc

01
5.1

)(21
4 




xx
xc

where the bounds are: 0.205.0 1x , 3.125.0 2  x and

0.150.2 3  x

Best solution:

)287126.11,356750.0,051690.0(*x

where 012665.0*)(xf

D. Speed Reducer design optimization problem

This problem represents the design of a simple gear box

such as might be used in a light airplane between the engine

and propeller to allow each to rotate at its most efficient speed.

The design of the speed reducer shown in Fig.4, is considered

with the face width x1, module of teeth x2, number of teeth on

pinion x3, length of the first shaft between bearings x4, length

of the second shaft between bearings x5, diameter of the first

shaft x6, and diameter of the first shaft x7.

Fig.4: Speed Reducer

This is an example of a mixed integer programming

problem. All variables are continuous except x3 that is integer.

The weight of the speed reducer is to be minimized subject to

constraints on bending stress of the gear teeth, surface stress,

transverse deflections of the shafts and stresses in the shaft.

The mathematical model of the problem is:

Minimize

)(78054.0

)(4777.7)(508.1

)0934.439334.14

3333.3(7854.0)(

2
75

2
64

3
7

3
6

2
7

2
61

3

2
3

2
21

xxxx

xxxxx

x

xxxXf









 (8)

subject to:

01
27

)(

3
2

21

1 
xxx

xc

01
5.397

)(
2

3
2

21

2 
xxx

xc

01
93.1

)(
4

632

3
4

3 
xxx

x
xc

01
93.1

)(
4

732

3
5

4 
xxx

x
xc

01109.16
0.750

110

0.1
)(6

2

32

4

3
6

5 














xx

x

x
xc

01105.157
0.750

85

0.1
)(6

2

32

5

3
7

6 














xx

x

x
xc

01
40

)(32
7 

xx
xc

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 140

01
5

)(
1

2
8 

x

x
xc

01
12

)(
2

1
9 

x

x
xc

01
9.15.1

)(
4

6
10 




x

x
xc

01
9.11.1

)(
5

7
11 




x

x
xc

where the bounds are: 6.36.2 1x , 8.07.0 2  x ,

2817 3  x , 3.83.7 4  x , 3.88.7 5  x , 9.39.2 6  x ,

and 5.50.5 7  x

Best solution:

)286683.5,350214.3,8.7,3.7,17,7.0,5.3(*x

where 348165.2996*)(xf .

V. PARAMETER SETTINGS, RESULTS AND DISCUSSION

A. Figures and Tables

Control parameters of the ABC algorithm are: swarm size,

limit, number of employed bees, number of onlookers, number

of scouts and maximum number of cycles [11]. In these

experiments, the colony size was taken 40 and the maximum

number of cycles was taken 4000. So, the total objective

function evaluation number is 240000. Each experiment was

repeated 60 runs. The percentages of onlooker bees and

employed bees were 50% of the colony and the number of

scout bees was changeable, as it was described in previous

section. The value of "limit" is equal SN(2D+1) where SN is

the number of possible solutions and D is the dimension of the

problem. The performance of the algorithm was considered in

terms of the best and average optimum values, and the best

solutions were recorded. Our approach to ABC algorithm has

been implemented in Java programming language and run on a

Pentium Core2Duo, 1.40-GHz personal computer with 2 GB

RAM memory.

Parameters adopted for SC-ABC algorithm are given in

Table 1.

TABLE I

CONTROL PARAMETERS ADOPTED FOR SC-ABC ALGORITHM

Control parameters for SC-ABC algorithm

swarm size 40

limit SN*(2D+1)

number of onlookers 50% of the swarm

number of onlookers 50% of the swarm

number of scouts changeable

Tables 2, 3, 4 and 5 show the solution vectors of the best

solution reached by our approach to ABC algorithm and the

values of the constrains for each of the problems tested. From

these tables can be concluded that the SC-ABC reached for the

first three tested problems almost the best known values, and

for the fourth tested problem the best known value. It is

important to mention that for the first two tested problems the

program in the most of executions found solution at value

between 1.73 and 1.74 and between 6060 and 6061,

respectively. For the problem Tension/compression spring the

program in the most of executions find the solution at value

0.01269 and for the problem Speed reducer, SC-ABC reached

the best known value in every run of the program execution.

TABLE II

ABC SOLUTION VECTOR FOR WELDED BEAM DESIGN OPTIMIZATION

PROBLEM

 Best solution

x1 0.205563

x2 3.471719

x3 9.042758

x4 0.205836

c1(x) -0.042486

c2(x) -56.120983

c3(x) -2.721E-4

c4(x) -3.431014

c5(x) -0.080563

c6(x) -0.235577

c7(x) -11.964330

f(x) 1.726625

TABLE III

ABC SOLUTION VECTOR FOR PRESSURE VESSEL DESIGN OPTIMIZATION

PROBLEM

 Best solution

x1 0.812500

x2 0.437500

x3 42.098187

x4 176.640750

c1(x) -4.988451

c2(x) -0.035883

c3(x) -5.297613

c4(x) -63.359250

f(x) 6059.768058

TABLE IV

ABC SOLUTION VECTOR FOR TENSION / COMPRESSION SPRING DESIGN

OPTIMIZATION PROBLEM

 Best solution

x1 0.051871

x2 0.361108

x3 11.036860

c1(x) -1.634E-7

c2(x) -4.383E-5

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 141

c3(x) -4.062131

c4(x) -0.724680

f(x) 0.012667

TABLE V

ABC SOLUTION VECTOR FOR SPEED REDUCER DESIGN OPTIMIZATION

PROBLEM

 Best solution

x1 3.500000

x2 0.700000

x3 17

x4 7.300000

x5 7.800000

x6 3.350215

x7 5.286683

c1(x) -0.073915

c2(x) -0.197996

c3(x) -0.499172

c4(x) -0.90147

c5(x) -2.220E-16

c6(x) -3.331E-16

c7(x) -0.702500

c8(x) 0.000000

c9(x) -0.583333

c10(x) -0.051326

c11(x) -0.010852

f(x) 2996.348165

Our results were compared to the results reached by Simple

Constrained Particle Swarm optimization algorithm (SiC-

PSO). Tables 6 and 7 show best, average fitness values and

standard deviation for each of the problems tested.

TABLE VI

BEST RESULTS OBTAINED BY SC-ABC AND SIC-PSO

Prob. Optimal SC-ABC SiC-PSO

Ex. 1 1.724852 1.726625 1.724852

Ex. 2 6059.714335 6059.768058 6059.714335

Ex. 3 0.012665 0.012667 0.012665

Ex. 4 NA 2996.348165 2996.348165

TABLE VII

AVERAGE AND STANDARD DEVIATIONS FOR THE RESULTS OBTAINED

 Average St. Dev.

Prob. SC-ABC SiC-PSO SC-ABC SiC-PSO

Ex. 1 1.7413 2.0574 2.29E-4 0.2154

Ex. 2 6060.2097 6092.0498 0.0069 12.1725

Ex. 3 0.0127 0.0131 2.4 E-07 4.1 E-04

Ex. 4 2996.3482 2996.3482 0.0000 0.0000

The results from Table 6 and Table 7 show that the average

values reached by SC-ABC, for each problem tested, are better

than the average values reached by SiC-PSO. But the SiC-PSO

reached the best known values for each problem tested. It can

be seen that the SC-ABC can converge very quickly towards

the global optimum, except for the problem Welded beam. To

have better results the SC-ABC algorithm needs to be

modified in some way to avoid the algorithm to trap at some

local attractors.

VI. CONCLUSION

In this paper, we present an improved ABC algorithm for

constrained problems (SC-ABC). The SC-ABC was tested on

three constrained optimization problems which contain

discrete and continuous variables. The algorithm showed a

good performance. We compared our results to the results

reached by Simple Constrained Particle Swarm optimization

algorithm (SiC-PSO) which showed a very good performance

when it was applied to the same problems. Although our

algorithm did not obtain the optimal values for each tested

problem, the average values reached by SC-ABC are better.

We can conclude that the SC-ABC can quickly search toward

the global optimum and can be a promising alternative for

solving this sort of problems due to its simplicity and

reliability. As part of our future work, we are interested to

perform a more detailed statistical analysis of the performance

of our proposed approach and to improve the new algorithm's

ability to escape the local attractors.

REFERENCES

[1] L. C. Cagnina, S. C. Esquive: Solving Engineering Optimization

Problems with the Simple Constrained Particle Swarm Optimizer,

Informatica, No.32, 2008, pp. 319-326.

[2] O. Yeniay: A comparative study on optimization methods for the

constrained nonlinear programming problems, Mathematical Problems

in Engineering Hindawi Publishing Corporation, 2005, pp. 165-173.

[3] M. Ettaouil, C. Loqman: Constraint satisfaction problems solved by

semidefinite relaxations, WSEAS Transactions on Computers, Vol.7,

2008, pp. 951-961.

[4] T. Y. Chen,Y. L. Cheng: Global optimization using hybrid approach,

WSEAS Transactions on Mathematics, Vol.7 ,2008 , pp. 254-262.

[5] A. Baykasoglu, L. Özbakır, P. Tapkan: Artificial Bee Colony Algorithm

and Its Application to Generalized Assignment Problem, Swarm

Intelligence: Focus on Ant and Particle Swarm Optimization, Book

edited by: Felix T. S. Chan and Manoj Kumar Tiwari, pp. 532,

December 2007, Itech Education and Publishing, Vienna, Austria.

[6] J. A. Joines, C. R. Houck: On the use of nonstationary penalty functions

to solve nonlinear constrained optimization problems with gas, In: Proc.

IEEE Int. Conf. Evol. Comp., 1994, pp. 579-585.

[7] L. Ozdamar: A dual sequence simulated annealing algorithm for

constrained optimization, Proceedings of the 10th WSEAS International

Conference on applied mathematics, Dallas, Texas, 2006, pp. 557-564.

[8] R. M. Gamot, A. Mesa: Particle swarm optimization: Tabu search

approach to constrained engineering optimization problems, WSEAS

Transactions on Mathematics, Vol.7, 2008, pp. 666-675.

[9] L. D. Li, J. Zhou, X. Yu, and X. Li: Constrained Power Plants Unit

Loading Optimization using Particle Swarm Optimization Algorithm,

WSEAS Transactions on Information Science and Applications, Vol.4,

2007, pp. 296-302.

[10] M. Mahdavi, M. Fesanghary, E. Damangir: An improved harmony

search algorithm for solving optimization problems, Elsevier, 2006, pp.

1567-1579.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 142

[11] D. Karaboga: An Idea Based on Honey Bee Swarm for Numerical

Optimization, Technical Report-TR06, Erciyes University, Engineering

Faculty, Computer Engineering Department, 2005.

[12] D. Karaboga, B. Basturk: Artificial Bee Colony Optimization (ABC)

Algorithm for Solving Constrained Optimization Problems, IFSA 2007,

LNAI 4529, Springer-Verlag, Berlin, Heidelberg, pp. 789-798

[13] D. Karaboga, B. Basturk: A powerful and efficient algorithm for

numerical function optimization: artificial bee colony (ABC) algorithm,

Journal of Global Optimization, Vol. 39, 2007, pp. 459-471.

[14] L. Jiann-Horng, H. Li-Ren: Chaotic bee swarm optimization algorithm

for path planning of mobile robots, Proceedings of the 10th WSEAS

international conference on evolutionary computing, Prague, Czech

Republic, 2009, pp. 84-89.

[15] L. Jiann-Horng, L. Meei-Ru, H. Li-Ren: A novel bee swarm

optimization algorithm with chaotic sequence and psychology model of

emotion, Proceedings of the 9th WSEAS International Conference on

Systems Theory and Scientific Computation table of contents, Moscow,

Russia, 2009, pp. 87-92.

[16] Z. Michalewicz, M. Schoenauer: Evolutionary Algorithms for

Constrained Parameter Optimization Problems, Evolutionary

Computation, 1995, pp. 1–32.

[17] C. X. Guo, J. S. Hu, B. Ye, Y. J. Cao: Swarm intelligence for mixed-

variable design optimization, Journal of Zhejiang University Science,

2004, pp. 249-260.

[18] D.E. Goldberg, K. Deb: A comparison of selection schemes used in

genetic algorithms Foundations of Genetic Algorithms, edited by G. J.

E. Rawlins, 1991, pp. 69-93.

[19] A. R. Yildiz, Hybrid Taguchi: Harmony Search Algorithm for Solving

Engineering Optimization Problems, International Journal of Industrial

Engineering, 2008, pp. 286-293.

[20] J. Arora: Introduction to optimum design, McGraw-Hill, 1989.

Milan Tuba received B.S. in mathematics, M.S. in

mathematics, M.S. in computer Science, M.Ph. in

computer science, Ph.D. in computer science from

University of Belgrade and New York University.

 From 1983 to 1994 he was in the U.S.A. first as a

graduate student and teaching and research assistant

at Vanderbilt University in Nashville and Courant

Institute of Mathematical Sciences, New York

University and later as an assistant professor of

electrical engineering at Cooper Union Graduate

School of Engineering, New York. During that time

he was the founder and director of Microprocessor Lab and VLSI Lab, leader

of scientific projects and supervisor of many theses. From 1994 he was

associate professor of computer science and Director of Computer Center at

University of Belgrade, Faculty of Mathematics, and from 2004 also a

Professor of Computer Science and Dean of the College of Computer Science,

Megatrend University Belgrade. He was teaching more than 20 graduate and

undergraduate courses, from VLSI design and Computer architecture to

Computer networks, Operating systems, Image processing, Calculus and

Queuing theory. His research interest includes mathematical, queuing theory

and heuristic optimizations applied to computer networks, image processing

and combinatorial problems. He is the author of more than 100 scientific

papers and a monograph. He is coeditor or member of the editorial board or

scientific committee of number of scientific journals and conferences.

 Prof. Tuba is member of the ACM since 1983, IEEE 1984, New York

Academy of Sciences 1987, AMS 1995, SIAM 2009. He participated in many

WSEAS Conferences with plenary lectures and articles in Proceedings and

Transactions.

Ivona Brajevic received B.S. in mathematics in

2006 and M.S. in mathematics in 2008 from

University of Belgrade, Faculty of Mathematics.

 She is currently Ph.D. student at Faculty of

Mathematics, Computer science department,

University of Belgrade and works as teaching

assistant at College of Business, Economy and

Entrepreneurship in Belgrade. She is the coauthor of

two papers. Her current research interest includes

nature inspired metaheuristics.

 Ms. Brajevic participated in WSEAS conferences.

Milos Subotic received B.S. in computer science in

2010 from Advanced School of Electrical and

Computer Engineering, Belgrade, Serbia and also

B.S. in economics in 2006 from Megatrend

University of Belgrade.

 He is currently Ph.D. student at Faculty of

Mathematics, Computer science department,

University of Belgrade and works as teaching

assistant at Faculty of Computer Science, Megatrend

University of Belgrade. He is the coauthor of two

papers. His current research interest includes nature inspired metaheuristics.

 Mr. Subotic participated in WSEAS conferences.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 143

