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Abstract—Artificial bee colony (ABC) algorithm is successfully 

used for many hard, mostly continuous, optimization problems. There 

is a way to extend standard ABC algorithm to constrained problems. 

In this paper an improved version of the artificial bee colony 

algorithm adjusted for constrained optimization problems is 

presented. It uses Deb’s rule. This modified algorithm has been 

implemented and tested on four standard engineering constrained 

benchmark problems which contain discrete and continuous 

variables. Our results were compared to the results obtained by 

simple constrained particle swarm optimization algorithm (SiC-PSO) 

which showed a very good performance when it was applied to the 

same problems. Our results are of the comparable quality with faster 

convergence. 

 

Keywords—Constrained optimization, Swarm intelligence, 

Artificial bee colony optimization.  

I. INTRODUCTION 

ONSTRAINED optimization problems have numerous 

applications. Engineering design is one of the scientific 

fields in which constrained optimization problems frequently 

arise [1]. These types of problems normally have mixed 

(continuous and discrete) design variables, nonlinear objective 

functions and nonlinear constrains. Constrains are very 

important in engineering design problems. They are usually 

imposed in the statement of the problems and sometimes are 

very hard to satisfy, which makes the search difficult and 

inefficient. 

Different deterministic as well as stochastic algorithms have 

been developed for solving constrained optimization problems. 

Deterministic approaches such as sequential quadratic 

programming methods and generalized reduced gradient 

methods [2], [3], [4] are inflexible to adapt the solution 

algorithm to a given problem. Generally a given problem is 

modeled in such a way that a classical algorithm can handle it 
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[5]. This often requires making several assumptions which 

might not be easy to justify in many situations. Therefore their 

applicability is limited. On the other hand, stochastic 

optimization algorithms such as genetic algorithms, simulated 

annealing algorithms, evolution strategies, evolutionary 

programming and particle swarm optimization (PSO) do not 

make such assumptions and they have been successfully 

applied for solving constrained optimization problems during 

the past few years [1], [6],  [7], [8], [9], [10].  

Karaboga has described an artificial bee colony (ABC) 

algorithm based on the foraging behavior of honey bees for 

numerical optimization problems [11]. Karaboga and Basturk 

have compared the performance of the ABC algorithm with the 

performance of other well-known modern heuristic algorithms 

such as genetic algorithm (GA), differential evolution (DE), 

particle swarm optimization on unconstrained and constrained 

problems [12], [13]. It has been shown that the ABC algorithm 

can be efficiently used for solving unconstrained and 

constrained optimization problems. In this work, our approach 

to the ABC algorithm for constrained optimization problems, 

called SC-ABC (Simple Constrained ABC), was applied to 

real engineering problems existing in the literature and its 

performance was compared with the performance of Simple 

Constrained Particle Swarm Optimizer (SiC-PSO) [1]. SiC-

PSO algorithm showed a very good performance when it was 

applied to several engineering design optimization problems. 

This paper is organized as follows. Section 2 describes the 

ABC algorithm for unconstrained and constrained problems. 

Section 3 presents our proposed approach. Section 4 describes 

four benchmark problem formulations. Section 5 presents the 

experimental setup adopted and provides an analysis of the 

results obtained from our empirical study. Conclusions and 

some plans for future research are provided in Section 6.  

II. ARTIFICIAL BEE COLONY ALGORITHM 

A. The ABC Algorithm Used for Unconstrained Optimization 

Problems 

In ABC algorithm [11], [12], [13], [14], [15] for the 

unconstrained optimization, the colony of artificial bees 

consists of three groups of bees: employed bees, onlookers and 

scouts. One half of the colony consists of the employed 

artificial bees and the other half includes the onlookers. All 
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bees that are currently exploiting a food source are known as 

employed and for every food source, there is only one 

employed bee. The employed bees exploit the food source and 

they carry the information about food source back to the hive 

and share this information with onlooker bees. Onlooker bees 

are waiting in the hive for the information to be shared by the 

employed bees about their discovered food sources and scouts 

bees will always be searching for new food sources near the 

hive. Employed bees share the information about food sources 

by dancing in the dance area inside the hive. The dance is 

dependent on the nectar content of food source just exploited 

by the dancing bee. Onlooker bees watch the dance and choose 

a food source according to the probability proportional to the 

quality of that food source. Therefore, good food sources 

attract more onlooker bees compared to bad ones. The 

employed bee whose food source has been abandoned by the 

bees becomes a scout. Scout bees can be visualized as 

performing the job of exploration, whereas employed and 

onlooker bees can be visualized as performing the job of 

exploitation. 

Each food source is a possible solution for the problem and 

the nectar amount of a food source represents the quality of the 

solution represented by the fitness value. At the first step, the 

ABC generates a randomly distributed initial population of SN 

solutions, where SN denotes the number of food source 

positions which is equal to number of employed bees. Each 

solution Xi (i = 1, 2, ..., SN ) is a D-dimensional vector and D 

is the number of optimization parameters. After initialization, 

the population of the positions (solutions) is subjected to 

repeated cycles of the search processes of the employed bees, 

the onlooker bees and the scout bees. Maximum cycle number 

MCN is one of the four control parameters in the ABC 

algorithm.  

In each iteration, every employed bee determines a food 

source in the neighborhood of its current food source and 

evaluates its nectar amount (fitness). The i-th food source 

position is represented as ),...,,( 21 iDiii xxxX  . )( iXF   

refers to the nectar amount of the food source located at iX  . 

After watching the dancing of employed bees, an onlooker bee 

goes to the region of food source at  Xi  with the probability: 
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In order to produce a candidate food position from the old 

one in memory, the ABC uses the following expression: 

 

                          )( kjijijijij xxxv                          (2) 

 

where },...,2,1{ SNk  and },...,2,1{ Dj  are randomly 

chosen indexes where k has to be different from i and ij   is a 

random number between [-1, 1].  

After each candidate source position vij  is produced and 

then evaluated by the artificial bee, its performance is 

compared with that of its old one and a greedy selection 

mechanism is employed as the selection operation between the 

old and the new candidate. Otherwise, if the new food source 

has an equal or better nectar than the old source, it is replaced 

with the old one in the memory. 

In ABC algorithm, providing that a position cannot be 

improved further through a predetermined number of cycles, 

the related food source is assumed to be abandoned. The value 

of predetermined number of cycles is an important control 

parameter of the ABC algorithm, which is called “limit for 

abandonment”. Assuming that the abandoned source is 

),...,,( 21 iDiii xxxX  , the scout discovers a new food source 

to replace Xi. This operation can be defined as: 

 

                             )( iiiij lulx                                  (3) 

 

where },...,2,1{ Dj , li and ui are the lower and upper 

bound of the parameter ijx  and   is a random number in the 

range [0, 1). It can be concluded from the above explanation 

that there are four control parameters used in the ABC: the 

number of food sources which is equal to the number of 

employed or onlooker bees (SN), the value of limit, the 

maximum cycle number (MCN). 
 

The pseudo code of the ABC algorithm is: 
 

1. Initialize the population solutions  xij,  i=1,2,…,SN, 

j=1,2,…,D  by Eq. (3) 

2. Evaluate  fitness  value of the population 

3. cycle = 1 

4. repeat 

5. Produce new solutions vij for the employed bees by using 

Eq. (2) and evaluate them 

6. Apply the greedy selection process 

7. Calculate the probability values Pij for the solutions xij  by 

Eq. (1) 

8. Produce the new solutions vij for the onlookers from the 

solutions xij selected depending on Pij and evaluate their 

fitness value 

9. Apply the greedy selection process 

10. Determine the abandoned solution for the scout, if 

exists, and replace it with a new randomly produced 

solution xij by Eq. (3) 

11. Memorize the best solution achieved so far 

12. cycle = cycle + 1 

13. until cycle = MCN 
 

B. The ABC Algorithm  for Constrained Optimization 

Problems 

General constrained optimization (CO) problem is to find x 

so as to 
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                 minimize f(x),   n
n Rxxx  ),...,( 1  

 

where SFx   . The objective function f  is defined on the 

search space nRS   and the set SF   defines the feasible 

region. The search space S is defined as an n-dimensional 

rectangle in nR . The variable domains are limited by their 

lower and upper bounds: 
 

iii uxl   ,  ni 1  
 

whereas the feasible region SF   is defined by a set of m 

additional constraints ( 0m  ): 
 

,0)( xgk   for  qk ,...,1  
 

 ,0)( xh j  for  mqj ,...1  

 

At any point Fx , the constraints gk that satisfy gk(x)=0 

are called the active constraints at x. By extension, equality 

constraints hi are also called active at all points of S [16]. Two 

methods are often used to handle constraints. One is a variable 

restriction method which restricts the solution space to the 

solutions which conform to the constraints. The second one is 

a penalty function method which allows solutions which 

violate the constraints at the expense of a suitably defined 

penalty function. However, determining appropriate penalty 

coefficients is not an easy task, it must be estimated based on 

the relative scaling of the distance metrics of multiple 

constraints, the difficulty of satisfying a constraint, and the 

seriousness of a constraint violation, or be determined 

experimentally. Although the adaptive penalty strategies 

proved to be effective in some cases, they are still quite 

problem-dependent. It was also noticed that if the values of the 

objective function were very large, then small differences 

between objective values were not easily identified, and this 

was undesirable, a leading cause of premature convergence in 

evolutionary computation [17]. 

In order to handle the constraints of this problem, the ABC 

algorithm employs Deb’s rules [18], which are used instead of 

the greedy selection employed between vi and xi in the version 

of the ABC proposed for unconstrained optimization 

problems. The method uses a tournament selection operator, 

where two solutions are compared at a time by applying the 

following criteria:  
 

• Any feasible solution satisfying all constraints is 

preferred to any infeasible solution violating any of the 

constraints 

• Among two feasible solutions, the one having better 

fitness value is preferred 

• Among two infeasible solutions, the one having the 

smaller constraint violation is preferred 
 

Because initialization with feasible solutions is very time 

consuming process and in some cases it is impossible to 

produce a feasible solution randomly, the ABC algorithm does 

not consider the initial population to be feasible. Structure of 

the algorithm already directs the solutions to feasible region in 

running process due to the Deb’s rules employed instead of 

greedy selection. Scout phase of the algorithm provides a 

diversity mechanism that allows new and probably infeasible 

individuals to be in the population. Beside of Deb's rules, the 

second change in ABC for CO problems is in order to produce 

a candidate food position from the old one in memory. The 

adapted ABC algorithm uses the following expression: 
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where },...,2,1{ SNk  and },...,2,1{ Dj  are randomly 

chosen indexes where k has to be different from i and ij  is a 

random number between [-1, 1]. Rj, },...,2,1{ Dj , is a 

randomly chosen real number in the range [0,1]. MR, the 

modification rate, is a control parameter that controls whether 

the parameter xij will be modified or not. In adapted ABC 

algorithm, artificial scouts are produced at a predetermined 

period of cycles for discovering new food sources randomly. 

This period is another control parameter called scout 

production period (SPP) of the algorithm. At every SPP cycle, 

it is checked if there is an abandoned food source or not. If 

there is, a scout production process is carried out. 

III. PROPOSED ALGORITHM: SC-ABC 

In our proposed approach (called Simple Constrained 

Artificial Bee Colony, or SC-ABC) as in the ABC for 

constrained problems, algorithm uses Deb’s rules instead of 

the greedy selection in order to decide what solution will be 

kept. The expressions for evaluating probability Eq. (1), for 

producing a candidate food position Eq. (2) and for 

initialization new food sources Eq. (3) stayed the same as in 

the version of the ABC proposed for unconstrained 

optimization problems.  

SC-ABC algorithm has changed the initialization phase and 

the scout phase compared to the ABC. In the initialization 

phase only the first initialization of food sources is completely 

random. In other initialization phases the first new food source 

is the food source from the previous run of the algorithm 

which has the best fitness value. In other words, the runs of the 

SC-ABC algorithm are not completely independent. Therefore, 

exploitation of the good sources was increased. In order to 

increase the exploration the scout bee’s phase was changed. In 

the scout phase the algorithm checks every possible solution. If 

the solution is not feasible, that food source is replaced with a 

new randomly produced solution. 
 

The pseudo code of the SC-ABC algorithm is: 
 

1. Initialize the population solutions xij, SNi ,...,2,1 , 

Dj ,...,2,1  by  Eq. (3)  for the first run. For every other 

run, if exists, x1j, Dj ,...,2,1 is the best solution from 

previous run and x1j, i = 2,...,SN, j = 1,...,D are randomly 
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produced solutions by Eq. (3) 

2. Evaluate  fitness  value of the population 

3. cycle = 1 

4. repeat 

5. Produce new solutions vij for the employed bees by using 

Eq. (2) and evaluate them 

6. Apply selection process based on Deb’s method 

7. Calculate the probability values Pij for the solutions xij by 

Eq. (1) 

8. Produce the new solutions vij for the onlookers from the 

solutions xij selected depending on Pij and evaluate their 

fitness value 

9. Apply selection process based on Deb’s method 

10. Determine the abandoned feasible solution for the 

scout, if exists, and replace it with a new randomly 

produced solution xij by Eq. (3) 

11. Every infeasible solution replace with randomly 

produced solution xij by Eq. (3) 

12. Memorize the best solution achieved so far 

13. cycle = cycle + 1 

14. until cycle = MCN  

 

The original ABC can be applied only to the continuous 

problems. However, the method can also be expanded to the 

discrete problems using discrete numbers. The state variables 

were treated in the SC-ABC as follows: for continuous 

variables, initial values were generated randomly between 

upper and lower bounds of the specification values. The value 

was also modified in the employed and onlooker bee’s phases 

between the bounds. For discrete variables, they could be 

handled in Equations (2) and (3) with a small modification, 

i.e., as though they were continuous with nearest available 

discrete values then being chosen. In that way, both continuous 

and discrete numbers can be handled by the algorithm with no 

inconsistency. 

IV. BENCHMARK PROBLEMS 

Proposed approach to Artificial Bee Colony Algorithm for 

constrained optimization problems (SC-ABC) was applied to 

four numerical examples: welded beam design optimization 

problem, pressure vessel design optimization problem, 

tension/compression spring design optimization problem and 

speed reducer design optimization problem [1]. These non-

linear engineering design problems have discrete and 

continuous variables. Discrete variables are used in many ways 

such as the representation of the set of standard sized 

components, the decision on the number of identical parts or 

the choice between different design options. For example, the 

number of teeth on pinion of a speed reducer are integer 

variables, the spherical head thickness pitch and the shell 

thickness of a pressure vessel are discrete variables. The 

benchmark problems represent optimization situations 

involving discrete and continuous variables that are similar to 

those encountered in everyday mechanical engineering design 

tasks. 

 

A. Welded beam design optimization problem 

The problem consists in dimensioning a welded steel beam 

and the welding length so as to minimize its cost subject to 

constraints on shear stress,  , bending stress in the beam,  , 

buckling load on the bar, Pc,  end deflection of the beam,  , 

and side constraints [1], [19]. The beam has a length of 14 in. 

and  6000 lb. force is applied at the end of the beam. There are 

four continuous variables: x1, x2, x3, x4, which in structural 

engineering are commonly symbolized by the letters shown in 

Fig. 1 (h,l,t,b). The design variables are thickness of the weld 

h, length of the weld l, width of the beam t, and thickness of 

the beam b. 

 

 
Fig.1: The Welded Beam design structure 

 

The mathematical model of the problem is: 
 

Minimize 
 

         )14(048110104711)( 2432
2

1 +xxx.+xx.Xf               (5) 
 

subject to: 
 

 0)( max  -txt(x)c1  
 

0)()( max2   -xxc  
 

0)( 413  -x xxc  
 

05)14(048110104710)( 243
2

14  -+xxx.+x.xc  
 

0125.0)( 15  -x xc  
 

0)()( max6   -xxc  
 

0)()(7  xP-Pcxc  

 

The important stress conditions which were used in 

mathematical model is Weld Stress -  t(x). The weld stress has 

two components. They are t1 - primary stress and t2 - 

secondary stress. M is the moment which is created by Force 

(F). J is polar inertia moment. This parameters are defined as 

follows: 
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Bar bending stress - )(x  is given as follows:  

 
2
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Bar deflection - )(x  is given as follows: 

3
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34
)(

xEx

PL
x    

 

Bar buckling load is given as follows: 
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The material properties and constraint values like shearing 

modulus, young's modulus, etc. used above are given as 

follow: P=6000, L=14, 25.0max  , 61030 E , 

61012 G , tmax=13600, 30000max  . 

 

The bounds are: 21.0 1x , 101.0 2  x , 1031.0  x  and 

21.0 1x . 
 

Best solution:  

)20573.0,036624.9,470489.3,20573.0(*x  

 where 724852.1*)( xf  . 
 

B. Pressure Vessel design optimization problem 

This example is to design a compressed air storage tank 

with a working pressure of 3000 psi and a minimum volume of 

750 ft
3
 [1], [17]. The schematic of a pressure vessel is shown 

in Fig.2. A cylindrical vessel is capped at both ends by 

hemispherical heads. Using rolled steel plate, the shell is made 

in two halves that are joined by two longitudinal welds to form 

a cylinder. Each head is forged and then welded to the shell. 

Let the design variables be denoted by the vector 

X=[x1,x2,x3,x4]
T
, where x1 is the spherical head thickness, x2 is 

the shell thickness, x3 and x4 are the radius and length of the 

shell, respectively. The objective is to minimize the 

manufacturing cost of the pressure vessel. The manufacturing 

cost of pressure vessel is a combination of material cost, 

welding cost and forming cost. The design variables x1 and x2 

have to be integer multiples of 0.0625 inch which are the 

available thickness of rolled steel plates. The radius x3 and the 

length x4 are continuous variables. 

   

 
Fig.2: Pressure Vessel design 

 

The mathematical model of the problem is: 

 

Minimize 
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00954.0)( 322  xxxc  
 

01296000
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4
)( 3
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2

33  xxxxc   

 

0240)( 44  xxc  

 

where the bounds are: 0625.0990625.01 1  x , 

0625.0990625.01 2  x and 200,10 43  xx  

 

Best solution: 

)636596.176,098446.42,4375.0,8125.0(*x  
 

where 714335.6059*)( xf  . 
 

C. Tension/compression spring design optimization problem 

This problem minimizes the weight of a 

tension/compression spring, subject to constraints of minimum 

deflection, shear stress, surge frequency, and limits on outside 

diameter and on design variables [1], [10], [20]. There are 

three continuous variables: the wire diameter x1, the mean coil 

diameter x2, and the number of active coils x3. The schematic 
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of a tension/compression spring is shown in Fig.3. 

  

 
Fig.3: Tension/Compression Spring 

 

The mathematical model of the problem is: 

 

Minimize  
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where the bounds are: 0.205.0 1x , 3.125.0 2  x  and  

0.150.2 3  x  

 

Best solution: 

 

)287126.11,356750.0,051690.0(*x  

where  012665.0*)( xf  
 

D. Speed Reducer design optimization problem 

This problem represents the design of a simple gear box 

such as might be used in a light airplane between the engine 

and propeller to allow each to rotate at its most efficient speed. 

The design of the speed reducer shown in Fig.4, is considered 

with the face width x1, module of teeth x2, number of teeth on 

pinion x3, length of the first shaft between bearings x4, length 

of the second shaft between bearings x5, diameter of the first 

shaft x6, and diameter of the first shaft  x7. 

 
 

Fig.4: Speed Reducer 

 

This is an example of a mixed integer programming 

problem.  All variables are continuous except x3 that is integer. 

The weight of the speed reducer is to be minimized subject to 

constraints on bending stress of the gear teeth, surface stress, 

transverse deflections of the shafts and stresses in the shaft. 

 

The mathematical model of the problem is:  
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where the bounds are: 6.36.2 1x , 8.07.0 2  x  , 

2817 3  x , 3.83.7 4  x , 3.88.7 5  x , 9.39.2 6  x , 

and 5.50.5 7  x  

 

Best solution: 

 

)286683.5,350214.3,8.7,3.7,17,7.0,5.3(*x  

where 348165.2996*)( xf  . 

V. PARAMETER SETTINGS, RESULTS AND DISCUSSION 

A. Figures and Tables  

Control parameters of the ABC algorithm are: swarm size, 

limit, number of employed bees, number of onlookers, number 

of scouts and maximum number of cycles [11]. In these 

experiments, the colony size was taken 40 and the maximum 

number of cycles was taken 4000. So, the total objective 

function evaluation number is 240000. Each experiment was 

repeated 60 runs. The percentages of onlooker bees and 

employed bees were 50% of the colony and the number of 

scout bees was changeable, as it was described in previous 

section. The value of "limit" is equal SN(2D+1) where SN is 

the number of possible solutions and D is the dimension of the 

problem. The performance of the algorithm was considered in 

terms of the best and average optimum values, and the best 

solutions were recorded. Our approach to ABC algorithm has 

been implemented in Java programming language and run on a 

Pentium Core2Duo, 1.40-GHz personal computer with 2 GB 

RAM memory. 

Parameters adopted for SC-ABC algorithm are given in 

Table 1. 
 

TABLE I 

CONTROL PARAMETERS ADOPTED FOR SC-ABC ALGORITHM 

 

Control parameters for SC-ABC algorithm 

swarm size 40 

limit SN*(2D+1) 

number of onlookers 50% of the swarm 

number of onlookers 50% of the swarm 

number of scouts changeable 

 

Tables 2, 3, 4 and 5 show the solution vectors of the best 

solution reached by our approach to ABC algorithm and the 

values of the constrains for each of the problems tested. From 

these tables can be concluded that the SC-ABC reached for the 

first three tested problems almost the best known values, and 

for the fourth tested problem the best known value. It is 

important to mention that for the first two tested problems the 

program in the most of executions found solution at value 

between 1.73 and 1.74 and between 6060 and 6061, 

respectively. For the problem Tension/compression spring the 

program in the most of executions find the solution at value 

0.01269 and  for the problem Speed reducer, SC-ABC reached 

the best known value in every run of the program execution. 

 

TABLE II 

ABC SOLUTION VECTOR FOR WELDED BEAM DESIGN OPTIMIZATION 

PROBLEM 

 Best solution 

x1      0.205563 

x2 3.471719 

x3    9.042758 

x4    0.205836 

c1(x)     -0.042486 

c2(x)   -56.120983 

c3(x)     -2.721E-4 

c4(x)     -3.431014 

c5(x)     -0.080563 

c6(x)     -0.235577 

c7(x)   -11.964330 

f(x)      1.726625 
 

 

TABLE III 

ABC SOLUTION VECTOR FOR PRESSURE VESSEL DESIGN OPTIMIZATION 

PROBLEM 

 Best solution 

x1      0.812500 

x2     0.437500 

x3    42.098187 

x4 176.640750 

c1(x) -4.988451 

c2(x) -0.035883 

c3(x) -5.297613 

c4(x) -63.359250 

f(x) 6059.768058 

 
 

TABLE IV 

ABC SOLUTION VECTOR FOR TENSION / COMPRESSION SPRING DESIGN 

OPTIMIZATION PROBLEM 

 Best solution 

x1 0.051871 

x2 0.361108 

x3 11.036860 

c1(x)   -1.634E-7 

c2(x) -4.383E-5 
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c3(x) -4.062131 

c4(x) -0.724680 

f(x) 0.012667 
 

 

TABLE V 

ABC SOLUTION VECTOR FOR SPEED REDUCER DESIGN OPTIMIZATION 

PROBLEM 

 Best solution 

x1  3.500000 

x2  0.700000 

x3    17 

x4 7.300000 

x5 7.800000 

x6     3.350215 

x7     5.286683 

c1(x) -0.073915 

c2(x)  -0.197996 

c3(x)  -0.499172 

c4(x) -0.90147 

c5(x)  -2.220E-16 

c6(x)  -3.331E-16 

c7(x)  -0.702500 

c8(x)  0.000000 

c9(x)  -0.583333 

c10(x)  -0.051326 

c11(x)  -0.010852 

f(x) 2996.348165 

 

Our results were compared to the results reached by Simple 

Constrained Particle Swarm optimization algorithm (SiC-

PSO). Tables 6 and 7 show best, average fitness values and 

standard deviation for each of the problems tested. 

 

TABLE VI 

BEST RESULTS OBTAINED BY SC-ABC AND SIC-PSO 

Prob. Optimal SC-ABC SiC-PSO 

Ex. 1 1.724852 1.726625 1.724852 

Ex. 2 6059.714335 6059.768058 6059.714335 

Ex. 3 0.012665 0.012667 0.012665 

Ex. 4 NA 2996.348165 2996.348165 

  

TABLE VII 

AVERAGE AND STANDARD DEVIATIONS FOR THE RESULTS OBTAINED 

 Average St. Dev. 

Prob. SC-ABC SiC-PSO SC-ABC SiC-PSO 

Ex. 1 1.7413 2.0574 2.29E-4 0.2154 

Ex. 2 6060.2097 6092.0498 0.0069 12.1725 

Ex. 3 0.0127 0.0131 2.4 E-07 4.1 E-04 

Ex. 4 2996.3482 2996.3482 0.0000 0.0000 

 

The results from Table 6 and Table 7 show that the average 

values reached by SC-ABC, for each problem tested, are better 

than the average values reached by SiC-PSO. But the SiC-PSO 

reached the best known values for each problem tested. It can 

be seen that the SC-ABC can converge very quickly towards 

the global optimum, except for the problem Welded beam. To 

have better results the SC-ABC algorithm needs to be 

modified in some way to avoid the algorithm to trap at some 

local attractors. 

VI. CONCLUSION 

In this paper, we present an improved ABC algorithm for 

constrained problems (SC-ABC). The SC-ABC was tested on 

three constrained optimization problems which contain 

discrete and continuous variables. The algorithm showed a 

good performance. We compared our results to the results 

reached by Simple Constrained Particle Swarm optimization 

algorithm (SiC-PSO) which showed a very good performance 

when it was applied to the same problems. Although our 

algorithm did not obtain the optimal values for each tested 

problem, the average values reached by SC-ABC are better. 

We can conclude that the SC-ABC can quickly search toward 

the global optimum and can be a promising alternative for 

solving this sort of problems due to its simplicity and 

reliability. As part of our future work, we are interested to 

perform a more detailed statistical analysis of the performance 

of our proposed approach and to improve the new algorithm's 

ability to escape the local attractors.  

REFERENCES   

[1] L. C. Cagnina, S. C. Esquive: Solving Engineering Optimization 

Problems with the Simple Constrained Particle Swarm Optimizer, 

Informatica, No.32, 2008, pp. 319-326. 

[2] O. Yeniay: A comparative study on optimization methods for the 

constrained nonlinear programming problems, Mathematical Problems 

in Engineering Hindawi Publishing Corporation, 2005, pp. 165-173. 

[3] M. Ettaouil, C. Loqman: Constraint satisfaction problems solved by 

semidefinite relaxations, WSEAS Transactions on Computers, Vol.7, 

2008, pp. 951-961. 

[4] T. Y. Chen,Y. L. Cheng: Global optimization using hybrid approach, 

WSEAS Transactions on Mathematics, Vol.7 ,2008 , pp. 254-262. 

[5] A. Baykasoglu, L. Özbakır, P. Tapkan: Artificial Bee Colony Algorithm 

and Its Application to Generalized Assignment Problem, Swarm 

Intelligence: Focus on Ant and Particle Swarm Optimization, Book 

edited by: Felix T. S. Chan and Manoj Kumar Tiwari, pp. 532, 

December 2007, Itech Education and Publishing, Vienna, Austria. 

[6] J. A. Joines, C. R. Houck: On the use of nonstationary penalty functions 

to solve nonlinear constrained optimization problems with gas, In: Proc. 

IEEE Int. Conf. Evol. Comp., 1994, pp. 579-585. 

[7] L. Ozdamar: A dual sequence simulated annealing algorithm for 

constrained optimization, Proceedings of the 10th WSEAS International 

Conference on applied mathematics, Dallas, Texas, 2006, pp. 557-564. 

[8] R. M. Gamot, A. Mesa: Particle swarm optimization: Tabu search 

approach to constrained engineering optimization problems, WSEAS 

Transactions on Mathematics, Vol.7, 2008, pp. 666-675. 

[9] L. D. Li, J. Zhou, X. Yu, and X. Li: Constrained Power Plants Unit 

Loading Optimization using Particle Swarm Optimization Algorithm, 

WSEAS Transactions on Information Science and Applications, Vol.4, 

2007, pp. 296-302. 

[10] M. Mahdavi, M. Fesanghary, E. Damangir: An improved harmony 

search algorithm for solving optimization problems, Elsevier, 2006, pp. 

1567-1579. 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 142



 

 

[11] D. Karaboga: An Idea Based on Honey Bee Swarm for Numerical 

Optimization, Technical Report-TR06, Erciyes University, Engineering 

Faculty, Computer Engineering Department, 2005. 

[12] D. Karaboga, B. Basturk: Artificial Bee Colony Optimization (ABC) 

Algorithm for Solving Constrained Optimization Problems, IFSA 2007, 

LNAI 4529, Springer-Verlag, Berlin, Heidelberg, pp. 789-798 

[13] D. Karaboga, B. Basturk: A powerful and efficient algorithm for 

numerical function optimization: artificial bee colony (ABC) algorithm, 

Journal of Global Optimization, Vol. 39, 2007, pp. 459-471. 

[14] L. Jiann-Horng, H. Li-Ren: Chaotic bee swarm optimization algorithm 

for path planning of mobile robots, Proceedings of the 10th WSEAS 

international conference on evolutionary computing, Prague, Czech 

Republic, 2009, pp. 84-89. 

[15] L. Jiann-Horng, L. Meei-Ru, H. Li-Ren: A novel bee swarm 

optimization algorithm with chaotic sequence and psychology model of 

emotion, Proceedings of the 9th WSEAS International Conference on 

Systems Theory and Scientific Computation table of contents, Moscow, 

Russia, 2009, pp. 87-92. 

[16] Z. Michalewicz, M. Schoenauer: Evolutionary Algorithms for 

Constrained Parameter Optimization Problems, Evolutionary 

Computation, 1995, pp. 1–32. 

[17] C. X. Guo, J. S. Hu, B. Ye, Y. J. Cao: Swarm intelligence for mixed-

variable design optimization, Journal of Zhejiang University Science, 

2004, pp. 249-260. 

[18] D.E. Goldberg, K. Deb: A comparison of selection schemes used in 

genetic algorithms Foundations of Genetic Algorithms, edited by G. J. 

E. Rawlins, 1991, pp. 69-93. 

[19] A. R. Yildiz, Hybrid Taguchi: Harmony Search Algorithm for Solving 

Engineering Optimization Problems, International Journal of Industrial 

Engineering, 2008, pp. 286-293. 

[20] J. Arora: Introduction to optimum design, McGraw-Hill, 1989. 

 

 

 

 

 

 

 

 

 

Milan Tuba received B.S. in mathematics, M.S. in 

mathematics, M.S. in computer Science, M.Ph. in 

computer science, Ph.D. in computer science from 

University of Belgrade and New York University. 

   From 1983 to 1994 he was in the U.S.A. first as a 

graduate student and teaching and research assistant 

at Vanderbilt University in Nashville and Courant 

Institute of Mathematical Sciences, New York 

University and later as an assistant professor of 

electrical engineering at Cooper Union Graduate 

School of Engineering, New York. During that time 

he was the founder and director of Microprocessor Lab and VLSI Lab, leader 

of scientific projects and supervisor of many theses. From 1994 he was 

associate professor of computer science and Director of Computer Center at 

University of Belgrade, Faculty of Mathematics, and from 2004 also a 

Professor of Computer Science and Dean of the College of Computer Science, 

Megatrend University Belgrade. He was teaching more than 20 graduate and 

undergraduate courses, from VLSI design and Computer architecture to 

Computer networks, Operating systems, Image processing, Calculus and 

Queuing theory. His research interest includes mathematical, queuing theory 

and heuristic optimizations applied to computer networks, image processing 

and combinatorial problems. He is the author of more than 100 scientific 

papers and a monograph. He is coeditor or member of the editorial board or 

scientific committee of number of scientific journals and conferences. 

   Prof. Tuba is member of the ACM since 1983, IEEE 1984, New York 

Academy of Sciences 1987, AMS 1995, SIAM 2009. He participated in many 

WSEAS Conferences with plenary lectures and articles in Proceedings and 

Transactions. 

 

 

 

 

Ivona Brajevic received B.S. in mathematics in 

2006 and M.S. in mathematics in 2008 from 

University of Belgrade, Faculty of Mathematics. 

   She is currently Ph.D. student at Faculty of 

Mathematics, Computer science department, 

University of Belgrade and works as teaching 

assistant at College of Business, Economy and 

Entrepreneurship in Belgrade. She is the coauthor of 

two papers. Her current research interest includes 

nature inspired metaheuristics. 

   Ms. Brajevic participated in WSEAS conferences. 

 

 

 

 

Milos Subotic received B.S. in computer science in 

2010 from Advanced School of Electrical and 

Computer Engineering, Belgrade, Serbia and also 

B.S. in economics in 2006 from Megatrend 

University of Belgrade. 

   He is currently Ph.D. student at Faculty of 

Mathematics, Computer science department, 

University of Belgrade and works as teaching 

assistant at Faculty of Computer Science, Megatrend 

University of Belgrade. He is the coauthor of two 

papers. His current research interest includes nature inspired metaheuristics. 

   Mr. Subotic participated in WSEAS conferences. 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 5, 2011 143




