
 

 

  
 Abstract—In this paper, we propose an SEIQR-SIS 
epidemic network model to study pandemic influenza and 
derive the approximate threshold condition (basis reproductive 
number) to examine the stability of the model. The numerical 
simulation of the disease transmission in the adaptive social 
network with people nodes and hub nodes is presented. The 
network parameters including visiting probability, hub radius 
and contact radius are used to investigate their impacts on the 
disease transmission. Our results show that these network 
parameters have a significant effect on the disease spread.  
 

 Keywords—Adaptive network, Stability analysis, SEIQR-
SIS epidemic model, Pandemic influenza,  Reproductive 
number 

I. INTRODUCTION 
OWADAYS, new human cases of an influenza 

A(H1N1) virus infection have been continuously 
announced in many countries around the world. Geographic 
spread of the H1N1 virus continues to evolve. The highest 
number of cases is in Mexico, the United States, and Canada. 
There are also reports of cases in Europe, Asia, and in Latin 
America. Currently, such outbreaks are taking place only in 
North America. The WHO is now keeping the pandemic alert 
level at phase 5. Whenever community-level transmission 
occurs in more than 1 WHO region, the pandemic alert level 
will increase to phase 6.  

In Thailand, the situation of influenza is quite anxious. As it 
just happened that 470 people became sick and 2 among those 
died in January 2011. For the moment, there is no tool 
accessible for simulating and predicting the spread of 
influenza. 
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Over the last thirty years, a number of influenza models 
have been proposed to study spreading behavior of the disease 
[1,2,5,6]. Flahault et al. (1994) proposed an epidemic model 
reckoning with regular air transport between cities of 
consideration to study the geographical spread of influenza in 
Europe. They simulated an epidemic within a network of a 
city including Amsterdam, Berlin, Budapest, Copenhagen, 
London, Madrid, Milano, Paris and Stockholm. The results 
showed that the time lag for action is less than one month after 
the first outbreak. Casagrandi et al. (2006) developed the 
SIRC model to study the epidemic of the influenza A viruses 
taking into account the class C for the cross-immune 
individuals in the population, and the seasonality effect on the 
epidemiological regimes. They found that as the cross-
immunity increase, the SIRC model displays more complexity 
to the system dynamics. Iwami and Hara (2010) constructed a 
generalized SIRS epidemic model with n-strain and derived 
the basic reproduction number of each viral strain. The local 
and global stabilities of equilibria were also analyzed.  
 Recently, many researchers have proposed epidemic models 
involving a network of nodes in a discrete space domain 
[9,10,12,13,14,15,17]. Mishra and Saini (2007) formulated 
SEIRS model of malicious objects in the situation of the 
computer network with the emphasis on the constant of latent 
and immune periods. With their models, it is found that the 
longer latent period is, the lesser chance of the system is 
endemic. Santorros and Vespignani (2008) employed a 
simulation technique and analytical method to study a 
dynamical model for the spreading of epidemic in complex 
networks. It is observed that many scale-free networks are 
inclined to the epidemic spreading with the persistence of 
infections no matter what the values of spreading rates are.  
Yuan and Chen (2008) focused their investigation on the 
virus-epidemic model on computer network called e-SEIR 
model with the point-to-group information propagation. They 
analyzed long term behavior of virus propagation equilibrium 
and discovered that it was crucial but difficult to impose the 
immunization of susceptible nodes for controlling long term 
propagation of such equilibrium. Li et al. (2010) used SIR 
model in homogeneous and heterogeneous networks of 
disease transmission to study the role of effective contact 
between individuals to the epidemic threshold and the 
incidence of infection. They found that the epidemic is a 
monotone decreasing function of epidemic threshold and 
increasing function of the number of effective contact. Lucas 
(2011) studied how network topology affects the long term 
distribution of infected and susceptible populations in the SIS 
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model. Mathematical analysis of SIS model in epidemiology 
on top of a one parameter family of networks ranging from 
scale free to exponential connectivity distribution is more 
resistant to the spread of a deadly disease. It has been 
recognized that mathematical model solely may cause the 
uncertainty in prediction of the spreading and public health 
responses.  
 More details can be seen from the review papers of Keeling 
and Eames (2005), and Meyer (2006). Keeling and Eames 
(2005) reviewed the basis of epidemiological and network 
theory, and discussed a wide range of the most popular 
network types and their implications for epidemic 
transmission. Meyers (2006) provided a brief overview of the 
compartment SIR model and the contact network 
epidemiology.  The important epidemiological quantities were 
derived by using bond percolation on random graphs to model 
the transmission of infectious disease though heterogeneous 
populations. He illustrated his method with two practical 
applications, namely, controlling walking pneumonia 
outbreaks in closed settings and optimal distribution of 
influenza vaccines. 

It is evident that the existing epidemic models considering 
the disease transmission only among the people in a particular 
contact radius, ignoring the disease spread through public 
places. Therefore, the epidemic network model taking into 
account the features of public places in the human community 
is more reasonable and it can be used to capture the disease 
transmission in biological network. 

The main aim of this paper is the study of the disease 
transmission using the SEIQR-SIS network model. The rest of 
the paper is organized as follows. The network model and its 
approximate threshold values for its stability are presented in 
section II. Section III presents a numerical example of 
pandemic influenza. Finally, discussion and conclusion are 
given in section IV. 

II. EPIDEMIC MODEL AND STABILITY ANALYSIS 

A. Epidemic Model 
 Our model contains two populations representing people 
and public places which hereafter called people nodes and hub 
nodes. We require an epidemic system for each population. 
Both systems are coupled into a larger system through 
infection of susceptible people nodes by infectious hub nodes, 
and susceptible hub nodes by infectious people nodes. Similar 
to the SIS-SEIQR model discussed more elaborate in [7], we 
have a model with 7 coupled people differential equations. A 
diagrammatic flow chart of the epidemic model for an 
infection between people nodes and hub nodes is shown in 
Figure 1. 
 
 

 
Figure 1: The flow diagram of the infection dynamics of 
SEIQR-SIS model where the dash line represents interaction 
between people nodes and hub nodes and the arrow line 
represents transfer flow of the system (1). 
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where S, E, I, Q and R are five compartments of people 
populations, S* and I* are two compartments of hub 
populations. The letters S, E, I, Q and R represent respectively  
the numbers of susceptible, exposed, infectious, quarantine 
and recovered individuals of people nodes whereas S* and I* 
denote respectively the numbers of susceptible and infectious 
individuals of hub nodes. Table 1 presents the nomenclature 
of parameters used in the system. 
 

Table 1: Nomenclature of parameters used in the model. 
 

Parameters Descriptions 
1β Transmission rate between people nodes 

2β Transmission rate between susceptible 
people nodes and infectious hub nodes 

α Transfer rate at which E becomes I 
κ Transfer rate at which E becomes R 

1γ Transfer rate at which I  and Q becomes R 
δ Transfer rate at which I becomes Q 

1β%  Transmission rate between hub nodes 

2β%  Transmission rate between susceptible hub 
nodes and infectious people nodes 

2γ  Transfer rate at which I* becomes S* 
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The total number of people nodes and hub nodes are taken 
to be constant and equal to N and M respectively. Thus, from 
the system (1), 

,S E I Q R N+ + + + =  * *S I M+ =  and 

( ) 0d S E I Q R
dt

+ + + + = ,  ( )* * 0.d S I
dt

+ =  

B. Stability Analysis 
 Since each hub node is fixed in location, and we assume 
that there is no contact between hub nodes, 1β%  is then set to 
zero. Other values of parameters 1β , 2β ,α , κ , 1γ , δ , 2β%  

and 2γ  are positive constants. Here we assume that a 
susceptible hub node becomes an infectious hub node if at 
least an infectious people node visits the hub node. If no 
infectious people node visits such infectious hub node, it will 
recover and will rejoin the susceptible class. 
 The mathematical formulation of the SEIQR-SIS epidemic 
problem is completed with non-negative initial conditions: 
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 We sort the equations in the system (1) so that the first 4 
equations correspond to the infected population, namely, 
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* *( , , , , , , ) tX E I I Q S S R= , 

the equilibrium solution is in the form  
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for , 1, ..., 4i j = , be a Jacobian matrix of F and V  at 0X . The 
reproduction number, 0R , is a threshold parameter for the 

stability of the disease free equilibrium 0X . It can be 
calculated through the formula: 

( )1
0 FVρ −=R , 

where 1−FV  is called the generation matrix and ( )Aρ  is the 
spectral radius of the matrix A . For our SEIQR-SIS model, the 
Jacobian matrix (5) can be explicitly written as 
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If 0 1<R , 0X  is locally asymptotically stable, but if 0 1>R , 

0X  is unstable. 

III. NUMERICAL EXAMPLE 
Using the SEIQR-SIS adaptive network model and our 

network algorithm as shown in Jumpen et al. (2011) and 
ignoring the disease transmission between hub nodes for 
pandemic influenza as presented in section II, we simulate 
pandemic influenza A(H1N1) on a complex network in a unit 
square region with 1000 nodes comprising 995 people nodes 
and 5 hub nodes.  The contact radius sR is set to be much 

smaller than 2  ( 2sR << ). Since the degree of each hub 
node varies in time, our network is called an adaptive 
network. In this section, the effect of contact radius, sR , hub 
radius, hR , and the visiting probability, p (the probability that 
the people node visits the hub node), are investigated. 

The topologies and properties of the adaptive network 
depend on the network parameters including hub radius and 
contact radius. Figure 2 presents topologies of a portion of the 
adaptive network with 2 / 4hR =  for two different contact 
radii. 
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Figure 2: Topologies of a part of the adaptive network with  
2 / 4hR =  for two different contact radii (a) 0.05sR =  and 

(b) 0.07sR = . 
 
 To investigate the effect of contact radius on the network 
properties including number of edges, average vertex-vertex 
distance, average degree and clustering coefficient, we fix the 
hub radius hR of 2 / 4  and vary contact radius. The results 
are presented in Table 2 and Figure 3. 
 
Table 2: Properties of the adaptive network for 5 different 
contact radii Rs. 
 

sR  0.05 0.07 0.09 0.11 0.13 

E  3670 6572 10473 15914 21155 
k  7.3400 13.1440 20.9460 31.8280 42.3100 
d  10.6935 7.2713 5.5451 4.45898 3.8723 
C 0.4900 0.5554 0.5807 0.6011 0.6127

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 3: Dependence of the network properties with contact 
radius for the adaptive network with hR  of 2 / 4 . 
 

From Table 2 and Figure 3, we can see that as the contact 
radius increases, the number of edges (|E|), the average degree 
( k ), the clustering coefficient (C) increase but the average 
vertex-vertex distance ( d ) decreases. 
 

Next, we investigate the effect of hub radius on the network 
properties by varying the sizes of hub radius with the 
particular contact radius, Rs, of 0.07. The results are shown in 
Table 3 and Figure 4.  
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Table 3: Properties of the adaptive network for 3 different hub 
radii Rh. 
 

hR  2 / 5  2 / 4  2 / 3  
E  6450 6572 6921 
k  12.8990 13.1440 13.8420 
d  7.3066 7.2713 7.2458 
C 0.5560 0.5558 0.5561 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4: Dependence of network properties with hub radius 
for adaptive network with sR  of 0.07. 

 From Table 3 and Figure 4, the results indicate that 
increasing the hub radius gives the higher number of edges 
(|E|) and the average degree ( k ) but the lower average 
vertex-vertex distance ( d ); however, the clustering 
coefficient (C) remains indifferent.  
 
 To study how the disease spreads in the population 
network, we still use the same adaptive social network. In the 
simulation, we use the parameter values as shown in Table 4. 
 
Table 4: Parameter values used in the simulation. 
 

Parameters Values 
1β 1/20 

2β 1 
α 1/4 
κ 1/50 

1γ 1/6 
δ 1/5 

1β%  0 

2β%  1 

2γ  1 
 

In real situation, people in each community do not visit 
public places at the same time, we then apply the visiting 
probability p of the people nodes to determine the change of 
the people node-hub node links of network over the time. 
Figure 5 presents topologies of the adaptive network with the 
hub radius Rh of 0.25, the contact radius Rs of 0.07 and the 
visiting probability p of 0.5 at four different times including 5, 
10, 15 and 20 days.  

 

 
(a) 

 

 
(b) 

 

 
(c) 
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(d) 

Figure 5: Topologies of a portion of the adaptive network (Nh 
= 5) corresponding to the neighborhood contact radius Rs of 
0.07, the hub radius Rh of 0.25 and the visiting probability p of 
0.5 at four different times: (a) t = 5 day, (b) t = 10 days, (c) t = 
15 days, (d) t = 20 days. 
 
As displayed in Figure 5, the visiting probability affects the 
change of the connection between hub nodes and surrounding 
people nodes over the time. 
 

To investigate the impact of hub radius on the disease 
transmission, we simulate the results on our network with 
three different hub radii: Rh of 2 / 3 , 2 / 4 and 2 / 5 . 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 6: The variation in the proportion of S, E, I, Q and R 
from 30 runs of simulation. 
 

 In Figure 6, the S, E, I, Q and R profiles are presented 
corresponding to Rh of 2 / 4 . The dark line represents the 
average proportion of each individual and a number of light 
blue lines illustrate the proportion of each individual obtained 
from 30 runs.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

 

 
(e) 

Figure 7: The S, E, I, Q and R profiles with visiting 
probability p of 0.5, contact radius Rs of 0.07 and various hub 
radius: Rh of 2 / 5 , 2 / 4 , 2 / 3 . 

 
Figure 7 compares the S, E, I, Q and R profiles obtained 

from the model with three different hub radii including Rh of 
2 / 3 , 2 / 4 and 2 / 5 . The results show that increasing 

hub radius from 2 / 5  to 2 / 3 gives the higher proportion 
of infected people from 0.66 to 0.91 and reduces the period of 
outbreak from 90 days to 45 days.  
 

The effect of visiting probability on the disease 
transmission is also investigated. Three values of visiting 
probability; p of 0.20, 0.40 and 0.60 are used in this study. 
The outcomes indicate that the higher value of visiting 
probability increases the proportion of all infected individuals 
and shortens the period of outbreak from 105 days to 75 days 
as displayed in Figure 8.   
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
Figure 8: The S, E, I, Q and R profiles with contact radius Rs 
of 0.07, hub radius Rh of 2 / 4 and various visiting 
probability p of 0.2, 0.4 and 0.6. 

IV. CONCLUSIONS 
 We propose an SEIQR-SIS network model to study the 
disease transmission in the adaptive social network. From the 
model, we calculate explicitly the reproduction number 
through the use of spectral radius of the generation matrix 
resulting in the approximate threshold condition. The network 
properties are then presented. We simulate the pandemic 
influenza on the SEIQR-SIS adaptive network with 5 dynamic 
hub nodes and 995 people nodes. The results show that the 
hub radius and the contact radius have significant effect on 
network properties. The hub radius and visiting probability 
influence the disease transmission in that the larger size of hub 
radius and the higher value of visiting probability speed up the 
outbreak of the disease and escalate the number of infected 
individuals. Therefore, to control the outbreak of the disease, 
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certain actions should be imposed like closing public places 
such as schools and theaters, and warning risk people to avoid 
such public places.  
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