
 

 

  

Abstract—Our goal was to analyze mechanical behavior of a 

rubber diaphragm inside a pneumatic valve and the FEM analysis 

appears as a very appropriate tool for this work. The hyperelastic 

parameters of the elastomer material of valve diaphragms were 

measured. Analyses of the diaphragms in working conditions were 

carried out. Considering the results of these analyses the new shapes 

of the diaphragms were designed and were verified again by the 

numerical analyses. 

 

Keywords—diaphragm, elastomer, hyperelasticity, optimization, 

rubber. 

I. INTRODUCTION 

E need to know how the rubber diaphragm will behave 

in real conditions in a valve. If we would made and test 

a number of prototypes during design procedure it 

would be very time and money consuming. The monitoring of 

the diaphragm behavior in real valve would be next problem 

and in a many industrial applications it is absolutely 

impossible to study behavior of the material in real situations 

[1]-[10]. 

The diaphragm is made from silicone rubber. The large 

elastic strain is characteristic for behavior of rubber. The 

stress-strain relation of elastomers is strongly nonlinear. Such 

materials are called hyperelastic and we can use a number of 

hyperelastic material models to simulate this nonlinear 

behavior today [11]. 

A big progress in application of the Finite element method 

for simulation of physical problems was made in last years 

[12]. All common hyperelastic models are incorporated in 

FEM systems today and the full apllication of nonlinear 

models of elastomers is allowed thanks development of the 

FEM systems. 

We have to measure properties of every particular material 

for FEM analysis in laboratory tests. The elastomer for 

diaphragms was tested in two modes - uniaxial and equibiaxial 

tension [13]-[15] (Fig. 1). 
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The diaphragms are used as components of pneumatic 

regulatory valves and they will be loaded by compressed air. 

The movable rod is fixed in the center of each diaphragm. 

Different pressure on inner and outer side of the diaphragm 

moves the rod to its upper or lower position and thus some 

parameters can be regulated by the rod position. 

 

 
 

Fig. 1a) uniaxial tension test, b) equibiaxial tension test 

 

II. MATERIAL AND METHODS 

A. Testing of the Diaphragm Material 

For the exact evaluation of hyperelastic material constants, 

the test data obtained from the uniaxial and equibiaxial tension 

tests are suitable. The uniaxial tension test was performed on 

standard testing machine in accordance with ISO 37 standard. 

Currently there are not any ISO standard methods for 

equibiaxial tension test and such tests are rarely performed in 

industrial laboratories. Thus the bubble inflation technique was 

used for equibiaxial characterization of diaphragm [14], [15]. 

In this method a uniform circular specimen of elastomer is 

clamped at the rim and inflated using compressed air to one 

side (Fig. 2 and 3). The specimen is deformed to the shape of 

bubble. The inflation of the specimen results in an equibiaxial 

stretching near the pole of the bubble and in the planar tension 

near the rim. The inflation of the specimen and current value 

of pressure is recorded in short time intervals using a high 

resolution digital camera. 
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Fig. 2 bubble inflation technique 

 

 

 
 

Fig. 3 the specimen inflation 

 

 

Obtained stress-strain relations for uniaxial and equibiaxial 

tension of diaphragm material are shown in Fig. 4. 

 

 
 

Fig. 4 stress-strain diagram of experimental data and 

hyperelastic material model 

 

 

Thanks to the spherical symmetry we can consider σθθ =  σφφ 

at the pole of the bubble. Then we can write the Cauchy stress 

tensor in spherical coordinates as: 
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The thickness of specimen is small and the ratio between the 

thickness of the inflated membrane t and the curvature radius r 

is small enough, then the thin shell assumption allow us to 

neglect the radial stress σrr in front of the stress σθθ. In addition 

we equate σθθ to the thickness-average hoop stress, which leads 

to: 

t

pr

2
=θθσ   (2) 

where p is the differential inflation pressure, r is curvature 

radius of specimen and t is the specimen thickness. 

With consideration of material incompressibility we can 

express the thickness of inflated specimen as: 

2

0

θθλ

t
t =

  (3) 

where t0 is the initial thickness of specimen (unloaded state). 

Further we have to measure the stretch λθθ at the pole of 

inflated material. Generally stretch λ is the ratio between the 

current length l and the initial length l0: 

0l

l
=λ   (4) 

We can use some of optical method for measurement of 

stretch λθθ and curvature radius r (camera, video camera, laser 

etc.). 

Substituting (3) into (2) we can compute the hoop stress σθθ 

as: 
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B. Material Model 

The James-Green-Simpson (by another name 3
rd
 order 

deformation) hyperelastic model was able to fit experimental 

data of used silicone rubber most closely and was chosen for 

analysis (Fig. 4). The strain energy density function W for this 

model is in the following form: 

 

W = c10(J1 - 3) + c01(J2 - 3) + c11(J1 - 3)(J2 - 3) + c20(J1 - 3)
2
 

+ c30(J1 - 3)
3
 (6) 

 

Measured coefficients (in Pa) for this model are: c10 = 

510140; c01 = 70468.1; c11 = - 946.852; c20 = 36418.3; c30 = - 

234.302, error of model is 1.822. 

J1 and J2 are the first and second deformation invariants 
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We can derive the stress from the strain energy function as 

ij

ij
C

W
S

∂

∂
= 2   (9) 

 

where Sij is tensor of 2
nd
 Piola Kirchhoff stress and Cij is right 

Cauchy-Green deformation tensor. 

  

III. ANALYSIS OF DIAPHRAGMS 

 

Three different diaphragms were analyzed. They are used in 

regulating pneumatic valves and all have axisymmetric circular 

shape. They all are made from the same material characterized 

in the previous chapter. Diaphragms are marked as I, II and III 

in the following text. 

 

A. Analysis of the Diaphragm - I 

Initial shape of the first diaphragm is shown in Fig. 5 and 6. 

Diameter of the diaphragm is 70 mm, height is 12 mm and 

diaphragm thickness is 0.3 mm. Maximum stress value in the 

diaphragm must not exceed 2.5 MPa.  

 

 
 

Fig. 5 half-model of the initial design of diaphragm – I 

 

Due to the fact that the diaphragm has axisymmetric shape it 

is very useful to create 2D axisymmetric FEM model. The 

diaphragm is mounted on the rod in center of valve and the 

outer rim of the diaphragm is clamped between two parts of 

valve body (Fig. 6). 

Both parts of the valve body and the rod are modeled as 

absolutely rigid. The diaphragm is modeled as hyperelastic 

using material model (1) described above. Analysis consists of 

four steps (Fig. 6). The rod moves right in first step. In other 

words the diaphragm is mounted on the rod. Part II of valve 

body moves down in second step. The diaphragm is fixed in 

basic position in valve now. The rod is moved to its upper 

position in third step and pressure is applied in last step 

because maximum of pressure can occur only when the rod is 

up. 

 

 
 

Fig. 6 initial shape of the diaphragm, its boundary conditions 

and loading 

 

Two criteria were used for results evaluation: maximum 

stress in the diaphragm (2.5 MPa) and functionality of the 

diaphragm. It means that the diaphragm must stay fixed in all 

other parts (the rod and the body of valve) during maximal 

loading and it must remain hermetic. 

First critical point of initial design is located at the rim of 

diaphragm and it is shown in Fig. 7. This situation occurs at 

the end of second step. Next two steps were not carried out 

because very high stress (12 MPa) arose here. It is evident 

from Fig. 7 that there is not enough space in the groove of 

valve body for deformation of the diaphragm rim. Thus the 

enlargement of this groove was the first modification of 

design. 

 

 

 

Fig. 7 results of initial design of diaphragm (after 2
nd
  step) – 

Von Mises stress [Pa] 

 

Results of the second version of design are shown in Fig. 8. 

Problem at the outer rim was solved and the maximum stress 

in this area is 1.5 MPa. 

The most critical point in the second version is near the 

central rim of the diaphragm. Its position is pointed as A in 

Fig. 8 and stress maximum (4.5 MPa) is located here. We can 

also see that the rim of the diaphragm is almost pulled out 

from the rod groove. But we can find others points where 

stress values are locally much higher than stress in their 

vicinity (points B and C in Fig. 8). Although stress does not 

exceed 2.5 MPa in these points we can reduce stress values by 

next modification of shape of the diaphragm. The two corners 
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of the initial shape are reason of stress concentration in these 

areas. 

 

 
 

Fig. 8 results of second version of design (after 4
th
 step) 

 

With consideration of these results the final shape 

modifications were done: for point A – widening diaphragm 

thickness close to central rim and increasing the depth of rod 

groove; for point B – elimination of corner; and for point C – 

increasing corner radius (Fig. 9). 

 

 
Fig. 9 Final shape of the diaphragm 

 

The shape shown in Fig. 9 was taken as the final design 

because its analysis did not reveal any critical points. The 

stress maximum of this shape is located in the same point as in 

previous version, but its value was significantly reduced to 2.3 

MPa (Fig 10 and 11). Also the central rim is much steadier in 

the rod groove. 

Reduction of stress in points B (Fig. 12 and 13) and C (Fig. 

14 and 15) was reached too. Nevertheless it is not as 

significant as in case of the central rim (point A). 

The final optimized shape of the diaphragm I is shown in 

the Fig. 16. 

 

 
 

Fig. 10 critical point A in the initial design of diaphragm I – 

Von Mises stress [Pa] 

 

 

 
 

Fig. 11 critical point A in the final design of diaphragm I – 

Von Mises stress [Pa] 

 

 
 

Fig. 12 critical point B in the initial design of diaphragm I  – 

Von Mises stress [Pa] 

 

Initial design Final design 
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Fig. 13 critical point B in the final design of diaphragm I – 

Von Mises stress [Pa] 

 

 
 

Fig. 14 critical point C in the initial design of diaphragm I – 

Von Mises stress [Pa] 

 

 
 

Fig. 15 critical point C in the final design of diaphragm I – 

Von Mises stress [Pa] 

 

 
 

Fig. 16 half-model of the final design of diaphragm – I 

 

B. Analysis of the Diaphragm - II 

Initial shape of the first diaphragm is shown in Fig. 17. 

Diameter of the diaphragm is 38 mm, height is 18 mm and 

diaphragm thickness is 0.25 mm. Maximum stress value in the 

diaphragm must not exceed 2.5 MPa as in the previous case. 

 

 
 

Fig. 17 half-model of the initial design of diaphragm – II 

 

First steps in analysis process are the same as with the 

diaphragm I. Outer rim of the Diaphragm is clamped between 

two rigid parts of the valve body and the central rim is 

mounted in the groove of the movable central rod (Fig. 18). 

Difference from the diaphragm I is in the loading. Diaphragm 

II is not loaded by the pressure but only by the moving of the 

central rod to the utmost position (Fig. 20). The values of the 

pressure are negligible in this case. 

Global maximum of Von Mises stress is on the outer rim of 

the diaphragm (point A in the Fig. 18) and the reason of this is 

inappropriate geometry of grooves in which the rim is 

clamped. The value of Von Mises in this point is 3.3 and 

exceeds criterion: 2,5 MPa. Solution of this was modification 

of the valve body design and because the profile of the 

diaphragm was not changed this is not further discussed. 

A 
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Fig. 18 initial profile of the diaphragm II and its mounting to 

the basic position in valve – Von Mises stress [Pa] 

 

 
 

Fig. 19 detail of the mounted central rim of the diaphragm II – 

Von Mises stress [Pa] 

 

We focused on the next critical point in the diaphragm 

profile that is signed as B in the Fig. 18. Detail of this part of 

the diaphragm is show in the Fig. 19. Values of Von Mises 

stress there are slightly lower then global maximum in point A 

but still they era above the criterion of 2.5 MPa. 

In Fig. 20 we can see the deformation of the diaphragm after 

moving the central rod to the uttermost position. The 

interesting fact is that the stress in the point B (near the central 

rim) in this case is lower than in the basic position of the 

diaphragm (Fig. 18). It means that the most critical state is in 

the basic position and the diaphragm should be optimized for 

this case. 

To decrease stress in point B we decided to increase the 

thickness of the diaphragm near the central rim and to change 

the geometry of the sharp corner in the diaphragm profile in 

this point as can bee seen in Fig. 21. These changes lead to the 

decreasing the stress values under the 2.5 MPa in the area B 

and to such shape of the diaphragm that allows more easy and 

fluent deformation during the moving of the central rod of 

valve. 

The detail of the optimized shape of the central area in the 

basic position is shown in the Fig. 22 and can be compared 

with the initial design in the Fig. 19. Deformation of the 

optimized diaphragm in the uttermost position of the rod is 

shown the Fig. 23 and the comparison with the initial situation 

in the Fig. 18 is again possible. 

The final optimized shape of the diaphragm II is shown in 

the Fig. 24. 

 

 
 

Fig. 20 initial profile of the diaphragm II moved to the 

uttermost position – Von Mises stress [Pa] 

 

 
 

Fig. 21 final profile of the diaphragm II and its mounting to the 

basic position in valve – Von Mises stress [Pa] 
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Fig. 22 detail of the mounted central rim of the optimized 

diaphragm II – Von Mises stress [Pa] 

 

 
 

Fig. 23 final profile of the diaphragm II moved to the 

uttermost position – Von Mises stress [Pa] 

 

 
 

Fig. 24 half-model of the final design of diaphragm – II 

 

C. Analysis of the Diaphragm - III 

Initial shape of the first diaphragm is shown in Fig. 25. 

Diameter of the diaphragm is 98.5 mm, height is 21.3 mm and 

diaphragm thickness is 0.3 mm. Maximum stress value in the 

diaphragm must not exceed 2.5 MPa as in the previous cases. 

 

 
 

Fig. 25 half-model of the initial design of diaphragm – III 

 

The outer rim of the diaphragm is clamped in the valve 

body by the same way as in both previous cases. But for the 

mounting of the central rim on the rod, two flat disks are used. 

They can be partially seen in the Fig. 26. The whole flat 

central part of the diaphragm is clamped between these two 

disks and they are together with the diaphragm mounted on the 

central rim. It means that opposite to the previous cases the 

central rim of the diaphragm is not in the groove but it is only 

pushed to the rod surface. 

After the application of the pressure on the lower side of the 

diaphragm too large deformation of the diaphragm was 

observed (Fig. 27). Next problem occurs in the center of the 

diaphragm where the gap between the diaphragm rim and the 

rod arise (Fig. 28). Thus the new shape of the lower clamping 

disk was designed and the thickness of the diaphragm was 

increased from 0.3 mm to 0.4 mm. The results of the analysis 

of the final shape of diaphragm can be seen in the Fig. 30. 
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Fig. 26 initial profile of the diaphragm III clamped between 

disks – pressure is not applied – Von Mises stress [Pa] 

 

 
 

Fig. 27 initial profile of the diaphragm III clamped between 

disks with the pressure applied – Von Mises stress [Pa] 

 

 
 

Fig. 28 central part of the initial design of the diaphragm III – 

Von Mises stress [Pa] 

 

After the analysis of the final profile of the diaphragm III 

the stress values did not exceed 0.9 Mpa. This value is very 

small in comparison with the strength of the material (2.5 

Mpa) and thus there was not need to change the shape due to 

the stress. 

 

 
Fig. 29 deformation of the final profile of the diaphragm III 

clamped between original disks with the pressure applied – 

Von Mises stress [Pa] 

 

 
 

Fig. 30 central part of the final design of the diaphragm III – 

Von Mises stress [Pa] 

IV. CONCLUSION 

All criteria for the diaphragm I were fulfilled and the final 

design of the diaphragm was created. Three versions of the 

diaphragm I were analyzed – initial, second and final version. 

The enlargement of groove in valve body was necessary after 

analysis of the initial version. The next model (second version) 

with this modification was created and analyzed. With 

consideration of results of second version the rod groove was 

deepened and the shape of diaphragm I was changed (final 

version – Fig. 9). The analysis of this modified shape proved 
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that there are not exceeded stress/strain limits in the final 

version of diaphragm. Deformation does not exceed limit even 

in the initial model. But high stress was the reason of shape 

modification for the final version. The point, where stress 

maximum is reached in diaphragm I, is near to the central rim 

(Fig. 8A). 

 

At first the geometry of the groove for the outer rim of the 

diaphragm II in the valve body was changed. And finally the 

thickness of the diagram II near the central rim was increased 

and the geometry of the diagram profile in this point was 

changed. 

 

The thickness and the shape of the lower clamping disk for 

the diaphragm III were modified. The inappropriate 

deformation of the diaphragm was the reason of these 

modifications. The stress value was under the limit and there 

was not need to other changes in the diaphragm. 
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