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Abstract—This paper discusses aspects of the mechanics 

involved in the Dean-like Space Drives, which are mechanisms with 
two eccentric lumped masses that rotate in opposite direction about 
parallel linear axes which are rigidly connected and driven by electric 
motors. The typical mechanism is based on the induced centrifugal 
forces and it achieves to convert rotary motion to unidirectional 
motion. In case of a constant angular velocity, we derived closed 
form analytical expressions for all mechanical quantities related to 
the motion of an object to which the inertial mechanism is attached. 
Based on these formulas, we found that although this device is not 
capable of achieving long-term propulsion, it can operate like a 
catapult thus reaching a maximum altitude. We also discuss the effect 
of predefined time varying angular velocity imposed by the motors, 
the oblique motion, the possible absence of power supply, the 
conservation of the linear momentum and the efficiency in the 
conversion process from rotary to unidirectional motion. 
 

I. INTRODUCTION 
ON-ROCKET space-launch is the idea of reaching outer 
space specifically from the Earth’s surface predominately 

without the use of conventional chemical rockets, which today 
is the only method in use. The main disadvantages of rocket 
systems is the increased cost of space flights, the serious 
damage to the atmosphere and the difficulties in full control of 
the spacecraft after its launch. Therefore, many scientists and 
technicians have proposed several alternative propulsive 
systems, for which reviews are available [1,2]. The interested 
reader may also consult a textbook concerning ion and Hall 
thrusters [3].  

Apart from the abovementioned electric propulsion, several 
inventors have proposed some purely mechanical means and 
particularly inertial propulsion mechanisms based either on 
centrifugal forces [4,5] or on Coriolis force [6]; in all these 
cases rotating members have been utilized. The general 
concept they claimed is that when those mechanisms 
(sometimes called inertial propulsion devices) are attached to 
a rigid object, the inertial forces could achieve long-term 
propulsion. As they claimed [4,5], the high efficiency is due to 
disappearing reaction forces (so-called ‘reactionless’ 
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propulsion). In contrast to these claims, a recent report on 
‘mechanical antigravity’ has concluded that since the total 
impulse per cycle becomes zero, the gravity forces lead the 
object back to the earth [7,8]. Unfortunately, the 
aforementioned report is quite qualitative in the sense that it 
presents neither detailed mechanics nor any graphs.  

Within the context of the abovementioned mechanical 
antigravity devices, one of the earliest concepts was to utilize 
two synchronized eccentric masses that rotate in opposite 
direction about parallel linear axes which are rigidly connected 
and are driven by electric motors. It is remarkable that Dean 
[4] demonstrated that his experimental prototype was capable 
of converting rotary motion to unidirectional motion and it 
travelled a certain distance along vertical guides (a photo is 
found at the link http://en.wikipedia.org/wiki/Dean-drive). 
Nevertheless, this topic has not been covered in a scientific 
manner so far. A careful search reveals an old paper in the 
Russian language [9], two remarks in a textbook [10], as well as 
the abovementioned references [7,8], which are very general 
reports dealing with many possible mechanical antigravity 
concepts (qualitatively including Dean’s drive). A preliminary 
study has been recently published to investigate the variation of 
the angular velocity in the rotating parts [11], while another 
preliminary report is concerned with the modification of the 
circular path to an eight-shaped one [12].  

Therefore, many questions have to be definitely answered. It 
should be also noted that the significance of the eccentric 
masses and their synchronization has become a matter of 
detailed analysis in the excitation of ground machines and 
structures [13,14] but not in the particular case under 
investigation in which the object is left to fly or fall.  

The purpose of this paper is fourfold. First, to obtain closed-
form equations of motion in the Dean space drive for the first 
time. Second, to provide a definite conclusion whether contra-
rotating mass particles are capable of producing long-term 
propulsion. Third, to investigate the effect of constant or 
predefined variable revolutions per minute in the motors. 
Fourth, to investigate the differences involved in the absence 
of power supply. Moreover, oblique motion and the 
conservation of linear momentum are discussed. Topics of 
ongoing research are mentioned.  
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II. BASIC FORMULATION 

A. Problem definition 
 

 
 

Fig. 1 Setup of the mechanism (a) when it is left to fall, (b) at the 
arbitrary time t, while (c) are characteristic positions of the 
initial polar angle 0φ  increasing as the arrow shows.  

 
Let us consider an object (body B) of mass M on which two 

rigid rods (No.1 and No.2), of the same radius r , are 
articulated as shown in Fig. 1; the rods bring at their ends 
lumped masses, of equal size m . The two aforementioned 
eccentric masses are driven by electric motors and are 
synchronized to rotate at constant angular velocities of equal 
and opposite magnitude, i.e. ( ) ( )1 2t tω ω ω= − ≡ . 
Obviously, the mass of the electric motors is included into the 
body B. The initial position of the rods are denoted by 0

1φ  and 
0
2φ , respectively, for which it is assumed that 0 0

1 2 0φ φ φ= − = ; 
therefore, for a later time instance, it holds that 

( ) ( ) ( )1 2t t tφ φ φ= − = . Without loss of generality, we 
assume that the articulation of the rigid rods is chosen at the 
level of the centroid G of the mass M.  

For the sake of briefness, we simplify the problem as 
follows: 

1. The shape of the object B appears no variation along 
the x- and y-axis (the latter is not shown).  

2. All participating bodies are considered to be rigid.  
3. The two lumped masses of magnitude m have always 

the same z-coordinate.  
4. The motors are fixed to the object at points that 

define a segment C1C2 parallel to the horizontal x-axis 
(Fig. 1) and their shafts are parallel to the y-axis.   

5. At the initial time instance, t = 0, the mechanism is 
left to fall from a height 0z .  

6. The effect of the air is neglected. 
Due to the abovementioned assumptions, the components 

of the centrifugal forces parallel to the x-axis are perfectly 
cancelled, and any possible motion of the object will be in the 
z-direction only. In other words, no rotation of the object B 
will occur, thus its position can be written in the simple form: 

 
( ) ( )0,z t z ω φ=               (1)  

 

B. Equations of motion 

Let 0 0
ˆ

zf=f e  stand for the reaction force, which the ground 

imposes to the object, with ˆ
ze  denoting the unit vector of the 

z-axis. According to the Newton’s Second Law, it holds: 
( ) ( )02 2cm M m M+ = + +r f g   (2) 

where ( )2m M+  is the total mass, ˆ
zg= −g e  is the 

acceleration of gravity vector, and cr  is the acceleration of the 
center of mass (CM) of the system of which the ordinate is 
given as  

( ) ( )2 2m Mc mz Mz m Mz + +=  (3) 

In (3), Mz , mz  and cz  are the ordinates of the centroid of 
mass M, the masses m and the overall centroid, respectively. 
The relationship between Mz  and mz  (mass No.1) is: 

sinm Mz z r φ= +  (4) 

Eliminating the ordinate mz  between (3) and (4), one receives: 

( )
2

2
sinc M

m

m M
z z r φ

+
= +  (5) 

Taking the second temporal derivative, the vertical 
acceleration is given by 

( ) ( ) ( )2 2 2 sinc Mm M z m M z mr φ+ = + +
 

   (6) 

Since the term ( )2 cm M z+   represents the sum of the external 
forces, which consist of only the gravitational ones, the 
combination of (2) with 0 0=f , and (6) leads to: 

( ) ( ) ( )2 2 sin 2 0Mm M z mr m M gφ+ + + + =

  (7) 

Furthermore, the second temporal derivative of ( )1sinφ  
becomes 

( ) ( )2
sin sin cosφ φ φ φ φ= − +

   (8) 
 
Considering the instantaneous angular velocity: 
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( ) ( )d t
t

dt

φ
φω ==   , (9) 

and substituting (8) and (9) into (7), the final differential 
equation of motion of the free object B becomes: 

( )2 sin cosMz g f tµ ω φ ω φ= − −  


  , (10) 

where 2ω  and ω  are related to the centrifugal and the 
tangential components, respectively, and 

 ( )2 2 Mmr mµ = +  (11) 
 

C. Solution of equation of motion 
    C1. General solution 

According to classical dynamics [15], the vertical position of 
the mass M is described by the formula 

( ) ( )0 0 0 0

t

Mz t z v t f d d
ξ

τ τ ξ= + + ∫ ∫ , (12) 

while the velocity will be 

( ) ( )0 0

t

Mz t v f dτ τ= + ∫ , (13) 

where 0z  and 0v  denote the initial height and initial velocity 

of the object B, respectively [ ( ) 00Mz z= , ( ) 00Mz v= ]. 
Considering that at the initial time t = 0 the angular velocity 
and the angular position are 0ω  and 0φ , respectively, the 
exact solution is obtained as follows:  

( ) ( ) ( )
( )

2

0 0 0 0

0

1 2 cos

sin sin

Mz t z v t gt tµω φ

µ φ φ

= + − +

− −
          (14) 

and 
( ) ( ) ( )0 0 0cos cosMz t v gt µ ω φ ω φ= − − −          (15) 

As previously mentioned, the horizontal motion of the object 
vanishes, i.e. 

( ) 0Mx t ≡  (16) 

It is remarkable that the altitude ( )Mz t  in (14) includes 

the gravitational term ( )2
0 0 1 2z v t gt+ −  which is 

responsible for the free fall, a second linear term 
( )0 0cos tµω φ , and also a small compound term 

( )[ ]0sin sintφ φµ− −  (its absolute value is smaller than 2µ ). 

Whatever the value of the coefficient ( )0 0cosµω φ  is, there is 
always a minimum value of time t for which and further the 
term ( )21 2 gt−  dominates thus leading to the fall of the 

object. 
In the sequence, two types of temporal variation of the 

angular velocity in the motors will be mainly investigated. A 
third variation (section IV, E) concerns the absence of power 
supply.  

 
 

C2. Constant angular velocity 
 In case of a constant angular velocity, (14) and (15) are 
valid with  

( ) 0tω ω ω= =      and     ( ) 0 0t tφ φ φ ω= = +  (17) 
 

C3. Exponential angular velocity 
Alternatively, we choose that: 
( ) ( )0 01tt eλφ φ ω λ= + −  (18) 

whence                                                  
( ) ( ) ( )0 0 0

tt t eλω φ ω ω λ φ φ= = = + −  (19) 

where λ ω φ= ∆ ∆  is a constant, while 0ω  and 0φ  are the 
initial angular velocity and the initial angular (polar) position 
of the rods, respectively. Obviously, the relationship between 
time and polar angle is 

( )[ ]0 0

1
ln 1t φ φ

λ
λ ω= − +  (20) 

Also, the temporal derivative of the angular velocity does not 
generally vanish and it becomes: 

0
teλω λω λω= =  (21) 

III. BREAKDOWN OF ENERGY 

A. General 
By virtue of (4), at every time instance the velocity of the i-th 

eccentric mass will be: 

( ), sin cos , 1, 2m i M i M i iz z r z r iφ ω φ= + = + =

    (22) 

( ), cos sin , 1, 2m i M i M i ix x r x r iφ ω φ= + = − =

   ; 0Mx ≡   
 (23) 

Therefore, due to the symmetrical arrangement of the two 
rotating masses so as with respect to the inertial reference 
frame (fixed to the ground) both velocities have the same 

measure given by ( )1 22 2
m m mx z= +v   , the kinetic energy of 

the system ‘object + eccentric masses’ will be: 

( )

( ) ( ){ }

22 2 2 2

2 22

1 1
2 2

2 2
1
2

2 sin cos

kin M m M m m

M M

E Mz m Mz m x z

Mz m r z rω φ ω φ

= + = + +

=

     

 + + + 

v   

 

       

(24) 
while the potential energy of the system will be: 

( )[ ]
( )

2 sin

2 2 sin
pot M M

M

E Mz m z r g

m M gz mgr

φ

φ

= + +

= + +
        (25) 

  
B. Operation when the object has fixed support to the 

ground 
When the object is fixed to the ground ( 0, 0M Mz z= = ), in 

virtue of (22)-(23), (24) and (25) lead to the relationships: 
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( )

2 2

02 sin 2 sin

fixed
kin

fixed
pot

E mr

E mgr mgr t

ω

φ φ ω

=

= = +
 (26) 

In other words, the potential energy continuously changes 
with respect to the varying polar angle φ  (the latter, of course, 
varies with time). Obviously, the aforementioned variation of 
energy is due to the variation of energy consumption by the 
electric motor. In more details, when the rods move from the 
lower to the upper vertical position the motor has to produce 
energy to achieve this lift ( 2z r∆ = + ), while when they move 
from the upper to the lower vertical position ( 2z r∆ = − ) the 
aforementioned increase of potential energy is given back to 
the motor but it is transformed mainly into heat. In other 
words, although the angular velocity has been assumed to be 
constant, the entire mechanical energy is not preserved but is 
harmonically fluctuates around the constant value of the 
kinetic energy (mean average), fixed

kinE  given in (26).  
 

C. Object free to move vertically with energy supply 
Assuming that at t = 0 the rigid rods are in the angular 

position 0φ  and the object starts from a vertical rest 

( 0, 0M Mz z= = ), the total initial energy becomes 
 

2 2
,0 02 sintotE m r mgrω φ= +  (27) 

 
At the arbitrary time instance, t, after the object has been left 
to fall, it will be at the height ( )Mz t  and the rigid rods will be 

at the angular position 0 tφ φ ω= + . Under these conditions, 
after some manipulations, the total mechanical energy is found 
equal to 

( ) ( )2 2 2 2
0

0

2
1 cos cos

2

2 sin

tot

m
E m r

m M

mgr

ω φ φ

φ

= + −
+

+

 
 
   (28) 

 
Therefore, when the object is left to leave the ground, in 

addition to the permanent term ( ,0totE ), (28) includes also an 

harmonic term [
( ) ( )

2 2 2
2 2

0

2
cos cos

2h

m r
E

m M
ω

φ φ= −
+

]. 

Obviously, the latter term is not only due to the periodical 
rising of the rigid rods, but also due to the lift ( )Mz t . As 
previously, the variation of the entire mechanical energy is due 
to the variation of the electric energy consumed by the motor. 
It is remarkable that for a given inclination of the rods (given 
polar angle φ ), the same mechanical energy is obtained. 
Therefore, when the object obtains its highest position (zero 
linear velocity), the linear kinetic energy becomes zero (only 
rotational kinetic energy exists). Comparing the latter situation 
with the same on the ground level (vertical position of the rods 
in both cases), it becomes evident that the abovementioned 

term hE  approximately represents the variation of the 
potential energy. The aforementioned ‘approximation’ refers 
to the fact that it is not a-priori clear which is the polar angle 
φ  at the position of the highest height, maxz .  
 

C1. Approximate analytical solution 
Equating the above-mentioned harmonic term hE  by 

( ) max2m M gz+  we can approximately write that 

( ) ( )[ ]2 2

0max 2 2 sing m r m Mz ω φ+≅       (29) 
Also, the time required to reach the abovementioned upper 

point is obtained by setting the object velocity equal to zero.  
Thus, 

( )0 maxcos cos 0Mz gtµω φ φ= − − − =  (30) 
Ignoring the term cosµω φ−  compared to the rest ones, we 
can approximately write that 
 

max 0cost gµω φ≅  (31) 
 

C2. Accurate numerical approach  
We can estimate the accurate time instance at which the 

maximum possible height is achieved by requiring that the 
velocity of the object becomes zero ( 0Mz = ). However, the 

solution of ( )0cos cos 0Mz gtµω φ φ= − − − =  implies all 

those time instances, maxlt , where the aforementioned local 
maxima or minima appear. These values are given by (30) 
from which we obtain:  

 

( ) ( ), 0 , 0cos coslocal opt local optt g tµω φ ω φ= + −      (32) 

Equation (32) is a transcendental equation and gives a range 
of values of which only one corresponds to the upper height. 
In general, it is sufficient to apply (32) for every round of the 
rigid rods, in the angle interval ( )[ ]0 02 , 2 1n nφ π φ π+ + + , 

0,1, , roundsn n=  , where roundsn  is an arbitrary chosen high 
number of rounds. Numerical solution can be performed using 
the standard Newton-Raphson method, in which the initial 
choice is in the middle of the aforementioned angle intervals. 
For each of the aforementioned solutions, the time is 
calculated using (17) and, then, the height is calculated using 
(14). If both aforementioned values are stored in two vectors, 
each of dimensions 1roundsn × , the estimation of the global 
maximum is trivial.   
 Alternatively, it is suggested to start with an initial value 
given by (31) and then continue with some local maxima on 
the interval in which the initial value belongs, as well as the 
left and right neighbouring intervals.  
 

D. Efficiency of the mechanism 
As was shown in section III, B, the initial kinetic energy 

2 2fixed
kinE mr ω=  (cf. (26)) at the ground level is transformed 
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into potential and kinetic energy, which at the maximum 
possible altitude (considering that the instantaneous object 
velocity vanishes) becomes: 

( ) ( )
( )

2
2

max 0

2
2 cos

2tot

m r
E m M gz

m M
ω

φ≅ + ≅
+

     (33) 

Therefore, the efficiency of the propulsive mechanism could 
be expressed by: 

( ) 2
02 2 cosfixed

tot kinE E m m Mη φ= ≅ +       (34) 
 

E.  Energy conservation without power supply 

So far we have assumed a continuous power supply through 
a motor. In the absence of a motor, if the object is suddenly 
left free to move by dragging the floor, the total energy is 
preserved. Taking into consideration that the total energy 
produced by adding in parts (24) and (25) is maintained 
constant, obviously equal to its initial value at time t = 0, after 
manipulations we obtained that the angular velocity varies 
according to the formula 

( ) ( )
1

2 2
0

0 2

2 sin
2 sin
m M

t
m M

φ
ω φ φ ω

φ
+

= =
+

 
 
 

       (35) 

As we could not find an explicit solution in the time t, (35) 
was numerically solved using the forward Euler method in 
conjunction with a very small time step.  

 
Fig. 2 Calculated height of the object versus the elapsed time 

( 3000ω = rpm, 0 0φ = ).  

IV. NUMERICAL SIMULATION 
A. General data 
In the beginning, the following set up is selected: 
• Rotating mass at the end of every rigid rod: m = 1∙0 

kg 
• Mass of the object B: M = 5∙0 kg    
• Radius of rigid rod: r = 0∙10 m  
• Angular velocity: ω = 314∙16 s-1 (3000 rpm)  

• Initial polar angle of the rods: 0 0φ = deg 
• Acceleration of gravity: g = 9∙81m/s2  

In the sequence, the analysis includes constant and time-
varying angular velocity of the electric motors. 

 
 B. Constant angular velocity 

 B1. Basic results 

 A typical graph of the time varying height of the object is 
shown in Fig. 2. It can be noticed that the object obtains its 
maximum height at the time max 0 915t gµω≅ = ⋅ s, and 
then it returns back to the ground level at 

2 1 83backt gµω≅ = ⋅ s.  
Concerning the linear velocity of the object B, a typical 

graph is shown in Fig. 3. It can be noticed that: 
- The object’s velocity is subjected to high variations 

(it fluctuates) but its lower value continuously 
coincides with that of a hypothetical free fall and also 
the amplitude is preserved.  

- Close to the abovementioned time backt , the maximum 
value of the fluctuating velocity becomes zero, thus 
being equal to the zero linear velocity at t = 0.  

 
Fig. 3 Calculated velocity of the object versus the elapsed time 

( 3000ω = rpm, 0 0φ = ). 

 
For the entire system, i.e. object and the attached rotating 

rigid rods, the graphs of the kinetic and potential energy are 
shown in Fig. 4, where one can notice a progressive decrease 
of the kinetic energy and an increase of the potential energy up 
to the time instance  maxt = 0∙915s, which corresponds to the 
highest possible height.  

 

 
Fig. 4 Breakdown of total energy of the system object-rods versus 

time  ( 3000ω = rpm, 0 0φ = ). 
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 A better understanding is obtained in Fig. 5, which 
focuses on the early period of the lift; it should be noted that 
the waveform remains unaltered and preserves the same 
minimum and maximum values in all subsequent instances. It 
can be noticed that at the initial time t = 0 ( 0 0φ φ= =  
degrees), the total energy of the system coincides with the 
kinetic energy that possesses its minimum value of 987 Nm. 
Within the first round of the rods, it obtains twice its maximum 
value of 1269 Nm, once at the angular position of 90 degrees 
and again at 270 degrees; the same minimum value of 987 Nm 
is obtained at 180 degrees. All the latter values are repeated 
for all subsequent rounds.  
 

  
Fig. 5 Total mechanical energy (kinetic and potential) of the entire 

system (object plus rods) versus time ( 3000ω = rpm, 

0 0φ = ). 

  
In the sequence, we investigate the influence of the rod 
masses, m on the propulsion performance. When every mass m 
equals to M, the corresponding (reference) maximum achieved 
height is denoted by max ( )Z M  while for any other lower value 

of m it is denoted by max ( )Z m . In Fig. 6, the normalized height 

max max( ) ( )Z m Z M  is illustrated in terms of the mass ratio 

( m M ), and their relation is not very far from the linear 
interpolation.   
 
 

 
Fig. 6  Normalized maximum height versus the mass ratio (m/M). 

 

B.2 Remarks 

In this study the angular velocity was considered to be 
preserved constant, a fact that could give the wrong impression 
that the kinetic energy of the rigid rods had to be preserved, 
too. In contrast, the variation of the latter is shown in Fig. 7, 
where one can notice that it continuously decreases until the 
upper height is reached. This happens because the analytical 
expression for the kinetic energy, i.e. 

( )2 2

, 2 coskin rods M ME m r z z rω ω φ= + +    , is coupled with the 

motion of the object, as it includes the terms 2

Mz  (non-

negative) and 2 cosMz rω φ  (of variable sign).  
 

 
Fig. 7 Variation of the kinetic energy of the rotating rigid rods versus 

time ( 3000ω = rpm, 0 0φ = ). 

 The exchange of the kinetic energy between the rods and 
the object is clearly shown in Fig. 8. It can be noticed that 
during approximately the first 70 degrees the kinetic energy of 
the rods increases and then it decreases obtaining its minimum 
value at the position of 180 degrees. In contrast, the kinetic 
energy of the object increases monotonically up to the 180 
degrees and then it decreases. The latter position of 180 
degrees is the point where the total kinetic energy obtains its 
local minimum value, which is -0∙62% smaller than the initial 
value (980∙83 Nm instead of 986∙96 Nm). It is noted that the 
aforementioned difference of 6∙13 Nm equals t o the increase 
of total potential energy) but this happens only for the 
particular case of 180 degrees at which the total mechanical 
energy obtains its initial value.  
 

 
Fig. 8 Exchange of kinetic energy between rotating rods and lifted 

object during the first round of 360 degrees ( 3000ω = rpm, 

0 0φ = ). 

 In more details, concerning the results shown in Fig. 5, the 
fact that the total mechanical energy of the system is not 
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preserved (except of the positions of 180, 360, 540 degrees, 
and so on), suggests that the fluctuations are due to the electric 
motor that consumes additional energy within the intervals 
[0,180]deg, [180,360]deg, [360,540]deg and so on; thus it is 
capable of elevating the object while maintaining a constant 
angular velocity.  
 It is also noted that the initial available kinetic energy 
required to achieve the lift of the object at a certain height is 
many times larger than that required to achieve the same 
maximum height by fully transforming the rotational kinetic 
energy into (a zero linear kinetic energy plus) potential energy. 
For example, the initial kinetic energy of 986∙96 Nm would be 
sufficient to lift the object up to 14∙4m but the calculations of 
this study suggest a maximum lift of only 4∙1m. In this 
particular case where the mass ratio is 0 2m M = ⋅ , these 
calculations determine the efficiency of the mechanism at 
about η = 0∙286 (28∙6%). Similar calculations, using (34), for 

m M = 0·3, 0·5, and 1·0 lead to η =  0·375, 0·444, and 
0·667, respectively. Obviously, when the rotating masses 
become infinitely large compared to the object mass 
( m M>> ), the efficiency tends to the unity ( 1η → ).  
 Moreover, let us now assume that close to the vertical 
orbit of the object there is a vertical wall of infinite height or a 
tether. When the object reaches the maximum altitude ( maxz ), 
we assume that either an external mechanical system or an 
internal grip is used to temporarily immobilize it. We also 
assume that the object remains there for a while, particularly 
until the rigid bars obtain again the initial horizontal position 
( 0 0φ = ) and at this specific time it is suddenly released to fall 
down. Obviously, the analysis of Section II and Section III 
dictates that the object will again rise for another maxz  from 

the latest datum ( maxdatumz z= ), thus leading to a total altitude 

max2z , measured from the ground level. Repeating the latter 
procedure, the object can climb as high as we wish provided a 
neighbouring vertical wall exists. Having said this, it should 
become clear that the capability of climbing at a multiple of 

maxz  is ought to the external or internal mechanical system that 
continuously offers the required reaction to support the object 
for its next climb.  
 

 
Fig. 9 Maximum achieved height versus the initial polar angle 0φ , 

for two typical angular velocities. 

 So far, the initial angular position was set at 0 0φ =  and 
the angular velocity at 3000 rpm (314∙16 s -1). Furthermore, the 
dependence of the maximum possible height that can be 
reached by the object, in terms of the initial polar angle and 
the angular velocity, is shown in Fig. 9. It can be noticed that 
the best result corresponds to the horizontal position of the 
rigid rods ( 0 0φ = ), while for greater than 90 degrees the 
maximum height practically vanishes. Theoretically, the 
maximum height becomes absolutely zero only when the 
position angle equals to 180 degrees. Also, the higher the 
angular velocity is, the higher altitude is obtained.  
 

C. Linearly increasing angular velocity  

 

 
Fig. 10 The vibration of the object when it is first left to fall and then 

the angular velocity increases linearly in time up to the 
value of (a) 3000, (b) 6000 and (c) 12000 rpm. 

 
 While all previous results and above remarks refer to an 
object that is left to fall when the attached rigid rods have 
already obtained a considerable angular velocity, 0 0ω ω= > , 
here we investigate what happens when the object is left free to 
fall at a zero angular velocity ( 0 0ω = ). Then, we assume that 

it obtains a final angular velocity of magnitude finω =  
1×314∙16, 2×314∙16 and 3×314∙16 s-1 (3000, 6000 and 12000 
rpm), respectively, within a time period of t∆ = 1.0E-04 
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seconds. In all these three cases, the transition from zero to the 
final value of the angular velocity varies linearly in time and 
then it is preserved constant at 3000, 6000, and 12000 rpm, 
respectively, as follows: 

( )
( ) , 0

,

fin

fin

t t
t

t t

t t
ω

ω

ω

∆ ≤ ≤ ∆
=

> ∆





 

 Starting from four different initial polar positions of the 
rigid rods ( 0φ = 0, 45, 90, and 135 degrees), the results are 
shown in Fig. 10. It can be noticed that, in contrast to the 
previous findings, the object cannot now rise up but it 
continuously falls down. The only essential difference between 
these four angular velocities is the time scale, in the sense that 
the higher the angular velocity is the shortest the time interval 
is (for the first five rounds shown). Another interesting fact is 

that only when 0 90φ =  degrees, the lower height of the object 
is very similar to that of the free fall case; otherwise it is lower.  
 
 

 D. Exponentially varying angular velocity 

In this subsection we assume that the angular velocity is 
governed by (19), i.e. as ( ) 0

tt eλω ω= . Typical graphs of the 

object’s velocity ( )Mz t  and the corresponding angular 

velocity ( )tω are illustrated in Fig. 11. Finally, it is noted that 
in the graphs of the vertical displacement of the object, coming 
from the differences in the selection of the λ -variable, can be 
only hardly noticed.  

 

 
Fig. 11 Object velocity, ( )

M
z t , and angular velocity versus time, ( )tω , for exponentially varying angular velocity [exponents: λ = -1, -10, 

and +1 are involved in (18)-(21)]. 

 
E. Motion without energy supply 

Similar to the above conclusion, when the motors stop 
supplying energy, the numerical solution of (35) shows that 
neither the maximum height nor the time required for the 

object to reach the ground is highly influenced. The 
differences with the previous cases (power supply) are not 
visible in the graphs. The only quantity that seriously changes 
is the angular velocity that varies periodically between 
approximately 266 and 314 s-1, i.e. the rigid rods preserve the 
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initial value as an upper limit but they also obtain a minimum 
value, which is about 15 percent less than the initial angular 
velocity.  

I. FURTHER DISCUSSION 
A. Oblique motion 

Let us consider the straight line segment that joins the two 
centers (C1 and C2) of the circular paths on which the rotated 
masses move. As previously mentioned, the two rigid rods are 
articulated at these centers as shown in Fig. 1. Let us also 
assume that the segment C1C2 is inclined with respect to the 
horizontal plane. In this case, the object will follow an inclined 
orbit, similar to the motion of a projectile thrown obliquely 
into the air [16]. In more detail, the resultant propulsive force 
is no further vertical but perpendicular to the line segment 
C1C2, while a small moment is produced by the weights of the 
rotating masses thus causing rotation of the object B. In this 
framework, a number of applications such as toys or 
locomotion devices could be developed by extending the 
mechanics of the elementary mechanism studied in this work. 

B. Conservation of linear momentum 

B1. General 

For all simulated results obtained in this work, either the 
motors supply energy or not, it has been numerically validated 
that the horizontal component of the resultant vector of 
system’s linear momentum are preserved. In contrast, the 
vertical component changes due to the gravitational (external) 
force, so as it always equals to the quantity ( )2m M gt− + , 
where t  denotes the elapsed time.  

B2. Absence of gravity and the first revolution of the 
lumped masses 

In the absence of gravity, in conjunction with the ideal 
condition of no frictional losses, the motion of the object 
continues for ever while the momentum conservation holds.  

Let us for simplicity consider the case where the two rods 
rotate at a constant angular velocity ω . As an initial condition, 
we consider that the mass M is at rest (velocity 0Mv = ), 
while the two bars are horizontal moving towards their upper 
point (Fig. 12). At the aforementioned time instance t = 0, the 
object is released from its support and it is left to fall down.  

At every time t, the absolute velocity of any lumped mass 
equals to the sum of the relative velocity plus the velocity of 
the object, i.e.: 

ˆm Mr θω= +v e v                     (36) 
Obviously, the vertical component of the initial linear 
momentum of the mechanical system is 

( ) 2i y
m rω=p                      (37) 

After rotation by 90 degrees ( 2φ π= ), the two bars 
become vertical, so as the vertical component of the tangential 
unit vector ˆ

θe  vanishes. Therefore, each of the two lumped 

masses obtains identical vertical velocity Mv  to the object; 

thus the momentum of the lumped masses becomes 2 Mmv , 

while that of the object becomes MMv .  
 
 

 
Fig. 12 Four successive positions of the object, starting from the 

bottom (where: 00 0, 0t φ φ= = = ) to the top (where: 

,2 2t π ω φ π= = ). 
 

 
Similarly, when φ π=  the lumped masses undertake 

absolute vertical velocity component equal to Mv rω− , while 

when 3 2φ π=  the vertical velocity component becomes 

again equal to Mv . Finally, when 2φ π=  the two bars 
become again horizontal having again vertical velocity 
components equal to Mr vω + , which implies that 0Mv =  as 
it initially was at t = 0. 

Based on the conservation of the linear momentum in the 
vertical direction we obtain Table 1. Obviously, for all 
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subsequent rotations, the same pattern in the velocity of the 
object M will be repeated.  

 
Table 1: Calculated object velocity and object height at four 

characteristic positions of the rods, in the absence of 
gravity.  

 
Polar Angle, φ  

[deg] 

Object 
Velocity 

Mv  (m/s) 
Height 

Mz  (m) 
0 0 0 

90 µω  ( )2 1µ π −  
180 2µω  µπ  
270 µω  ( )3 2 1µ π +  
360 0 2µπ  

( )2 2mr m Mµ = +  
 

 
 C. Limitations of this study 

In the particular case studied in this paper (i.e., negligible 
moments of inertia for all three, the rod and the two eccentric 
masses), we will show below that Lagrange equations coincide 
with the ‘Centre of Mass Theorem’ we applied in this work. In 
fact, if we start from (24) and (25), in which however we enter 
the initially supposed ‘unknown’ horizontal motion as a non-
vanishing variable, i.e. ( ) 0Mx t ≠ , we can write the 
Lagrangian L of the dynamical system as follows: 

( ) ( )

( ) ( )

( )[ ]

22 2

2 2

1
sin

2

sin 2 cos

2 2 sin

kin pot

M M M

M M

M

L T V E E

M x z m x r

m x r m z r

m M gz mgr

ω φ

ω φ ω φ

φ

=

= − ≡

+ + −

+ + + +

− + +

−





 

 

           (38) 

The two generalized coordinates of the dynamical system 
may be chosen as follows: 

( ) ( )1 2,M Mq x t q z t= =  .       (39) 

By virtue of (39) and considering 0 tφ φ ω= +  while all 
four quantities (m, g, r , ω ) are constants, (38) becomes: 

( ) ( ) ( )( )

( )( ) ( )( )

( ) ( )

22 2

1 2 0

2 2

0 0

0

1 2 1 2 1

1 2

2

1
sin

2

sin 2 cos

2 2 sin

, , ,L M q q m q r t

m q r t m q r t

m M gq mgr t

q q q q ω φ ω

ω φ ω ω φ ω

φ ω

= + + − +

+ + + + + +

− + + +




  

  

 

 

           (40) 
Following [15], the equation of motion is given by: 

0
i i

L Ld

dt q q

∂ ∂
=

∂ ∂

 
− 

 
     for  1, 2i =       (41) 

For i = 1, (41) implies that: 

1 0q =   ,            (42) 

which means that the object does not accelerate and 
therefore preserves its initial (zero) horizontal velocity, i.e. 

( ) 0Mx t ≡ , as anticipated due to the symmetry.  
For i = 2, after manipulation (41) implies (7), as was 

anticipated. 
Restrictions of this study are as follows:  

• As previously mentioned, this study reduces to 
mechanical analysis in which we have ignored the 
rotational motion of the rigid bodies. In general, 
we have to consider the moment of inertia Ir of the 
rod and the corresponding moment of inertia Im 
for each of the two eccentric masses. These two 
mechanical quantities modify the kinetic energy in 
the Lagrangian (38), which in this general case 
becomes still more convenient and safe than 
applying the aforementioned ‘Centre of Mass 
Theorem’.  

• The angular velocities ω  of both electric motors 
(and their associated eccentric masses) have been 
assumed to be identically equal, while in 
engineering practice a slight difference may occur 
( 1 2ω ω≅ ). In this case, in addition to the vertical 

motion ( )Mz t , the object (body B)  will obtain a 

horizontal motion ( ) 0Mx t ≠  and a rotation; as a 
result, the complexity in relevant mechanics 
increases.  

• In the most part of this study the angular velocity ω  
has been assumed to be constant. In general, when 
ω  changes with time, tangential inertial forces 
are applied on the eccentric masses; therefore 
both elastic rods should be designed thick so as to 
be capable of undertaking high bending 
deformation [18], which has been ignored in this 
work.  

• Since every electric motor is identified by a 
characteristic curve (shaft torque Md versus 
angular velocity ω ), each time the couple 
(Md,ω ) must be a point in the diagram that 
follows (moves along) the aforementioned curve 
[13]. It should be further clarified that: 

o The case of constant angular velocity 
( 0ω ω= ) refers to a motor having an 
ideal characteristic curve that is 
perpendicular to the horizontal axis ω , 
at least in the neighborhood of 0ω .  

o The angular velocity may also deliberately 
vary on a large extent by properly 
controlling the electric motor (guidance), 
for example, according to an exponential 
law [11]. Again, each time the couple 
(shaft torque, angular velocity) must be a 
point (in the diagram) moving along the 
characteristic curve of the electric motor; 
the aforementioned condition has not 
been considered in this study.  
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• In this study we have assumed that the mechanism is 
left to fall from a height 0z . Therefore, the case of 
an object (body B), which initially lies on a floor 
with dry friction [19], is not included; preliminary 
numerical results depict that –in the beginning– 
the problem is nonlinear due to bouncing effects.  

• The wave propagation phenomena along the elastic 
rod (or beam), which occur either in the transient 
(initial) phase when the motor is accelerated or 
particularly when the angular velocity later varies 
with time, have been ignored.  

• Within the framework of the abovementioned wave 
propagation analysis, the strong dependence of the 
natural frequency of the elastic rods versus the 
angular velocity has to be taken into 
consideration. In more details, the induced 
centrifugal force per unit volume will alter the 
stress equilibrium thus resulting in a modified 
eigenfrequency, as happens, for example, in 
rapidly rotating turbomachinery [20] to which the 
finite element method is usually applied [21].  

• The common angular velocity of the two eccentric 
masses ( 1 2ω ω ω= ≡ ) must be significantly 
different than the natural frequency of the elastic 
rods, so as to avoid resonance [20].  

• Ongoing research deals with the abovementioned 
elastic deformation of the rotating rods (bending 
due to tangential force, and tension due to 
centripetal force) as well as the associated 
dynamic and gyroscopic phenomena that appear 
either when the path of the masses changes from 
circular to a more complex smooth curve or the 
entire mechanism is rotated about its vertical axis 
of revolution [12,17]. Although slowly moving 
mechanical components are usually properly 
analyzed using general purpose finite element 
codes such as ANSYS, COSMOS/M [22] etc, the 
mechanism of this paper requires the use of a 
dedicated software such as ADAMS-ANSYS or 
the Motion Analysis module in SolidWorks, 
among others. At the moment, an in-house 
customized finite element computer code is under 
construction and is anticipated to be a useful tool 
for further engineering analysis.  
 

II. CONCLUSION 
We showed that the combination of two contra-rotating 

masses moving along two circular paths can conditionally 
produce motion on their plane and particularly in the direction 
perpendicular to the line of centers. The induced velocity of 
the object becomes oscillatory while the displacement 
increases progressively with time. However, due to the 
gravitational acceleration g, an additional free fall motion must 
be superposed to the previous state, in a vector sense. In more 
details, and focusing in the case of a vertical setup of the 

circular paths, when the motors start operating at the initial 
time at which the object is left to fall, they are not capable of 
lifting the object. In contrast, when a high value of initial 
angular velocity has been obtained before the object is left free 
to move a short-term lift is possible; the more horizontal the 
initial position of the rods is the higher altitude the object 
achieves. For given initial angular velocity and initial position 
of the rods, we found that the maximum height does not 
practically depend on the way the angular velocity varies with 
time, whereas the profile of the oscillating object’s velocity is 
drastically influenced. We also found that if at the initial time 
instance the synchronized motors stop supplying energy, the 
maximum altitude is practically the same as that obtained 
when they were working; the basic difference is that now the 
angular velocity varies with time and the total energy is 
preserved. Ongoing research deals with the elasto-dynamic 
analysis of the same mechanical system.  
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