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Abstract- This paper describes a filter that is designed to track 

shocks in the time domain, and to isolate them from any other 

random or harmonics components. This innovative tool can be used 

in the time domain as a denoising filter to estimate the proportion of 

the total signal energy caused by the shocks and to quantify the 

severity of damage. It can also be applied in the frequency domain 

and will allow through envelope or time-frequency analysis to clearly 

identify the sources of the shocks even if they are from various 

origins. This method makes also possible for differentiating the 

synchronous shocks from the pseudo-synchronous ones often caused 

by the slip of mechanisms and help to diagnose the severity of 

damage even with multiple defects. 

 

Keywords—Bearing, Shock Filter, Signal Processing, Vibration, 

Time-frequency analysis, Envelop, slipping, multiple defects.  

I. INTRODUCTION 

achines maintenance is conditioned to an adequate 

monitoring of potential failures. Machinery vibration 

consists essentially of three signal types: Periodic 

(unbalance, misalignment, blade pass), random (friction, 

noise, fluctuation, turbulence) and shocks (bearing faults, gear 

faults, etc.). The determination of each of these types of 

vibration constitutes in itself a powerful monitoring technique. 

One of the most involved mechanisms in rotating machines 

failures are the bearings. The recognition and classification of 

bearings defects by vibratory analysis remains a subject of 

great interest in the rotating machines, because the detection 

of the damage phenomena and its propagation still remain 

nebulous to date. Precedent works allowed for the 

development of simulation software generating the vibratory 

response caused by defective bearings [1]. The numerical 

simulator has been used to generate a database covering a 

large range of defects configurations. A relevant review of 

vibration measurement methods for the detection of defects in 

rolling element bearings has been presented by Tandon and 

Choudhury [2]. The monitoring methods applied to bearings 

can be achieved in a number of ways [3]. Some of these 

methods are simple to use while others require sophisticated 

signal processing techniques. In fact, a large number of defects 

generate shocks that can be analyzed in either time domain: 

RMS, Peak, Crest Factor (CF), Kurtosis (Ku), Impulse Factor, 

Shape Factor, etc. [4], or in frequency domain: spectral 

analysis around bearing defect frequencies [5-7], frequency 
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spectrum in the high frequency domain, Spike energy [8], 

enveloping [9], or time-frequency and wavelet analysis [10], 

etc.  

 

The shocks are generally considered as abnormal 

phenomena in most rotating machinery and as reflecting the 

effect of defects for which the source must be identified. 

Usually shock phenomena can be identified by scalar time 

descriptors. RMS and Max-Peak values are quite adequate 

when the fault is quite developed and the signal-to-noise is 

high. Unfortunately, when the fault is small and the signal-to-

noise ratio is weak, these two descriptors are not enough 

efficient alone. The increase in size defect is usually observed 

more readily by the Peak rather than by the RMS value. 

Because of this, the crest factor, which is defined by the ratio 

of the Peak to RMS value, is better adapted for monitoring the 

evolution of shock phenomena. This relationship between 

these two descriptors during the evolution of a fault is 

interesting, but it is easier to combine them in only one scalar 

descriptor such as the Crest Factor (CF) or the Kurtosis (Ku).  

 

In this paper, a shock detector, based on the Julien Index 

[11-15] is described. The main goal of a Shock Filter (SF) is to 

examine the shock content into a signal. The method uses the 

time waveform and consists in recognizing the shock pattern 

of each defect, insulating it and treating it separately from the 

original signal. Thus, the effect of each defect in the vibratory 

signal is treated independently of the others and will make it 

possible to localize it and to distinguish the response from 

multiple defects. The shock descriptor also allows for counting 

the number of shocks per unit time, or better, for each cycle or 

revolution of the machine. This simple descriptor may be used 

by a non-specialist to monitor the number of shocks per 

revolution as the fault progresses. The shock detector allows 

not only for determining the number of shocks, but also their 

location and individual amplitudes. It is then possible to use 

the Fourier transform to determine the frequencies at which 

the shocks occur, similarly to an envelope analysis which 

would only react to shock signals, rather than to all the other 

manifestations of modulation phenomena. It is well known 

that bearings produce non-synchronous frequencies that can 

vary due to the slip phenomena that is not negligible. It is 

shown in this paper that applying a statistical method on the 

frequencies identified by the shock filter allows for identifying 

the slipping phenomena. Finally, the SF helps to diagnose the 

severity of each impact due to multiple defects, after 

introducing the information into a neural network.  
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II. PROCEDURE FOR SHOCK FILTERING 

With excellent properties to detect shocks and fast 

computing time, Kurtosis has been found the best time 

descriptor for evaluating energy level of the three windows 

[4].  
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N being the number of samples in each window. 

 

The Shock detector use three consecutive short-time filters 

sliding on the time signal (Fig. 1).  
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Fig. 1: Identification of short time windows 

 

 

The Kurtosis into each window (central, left and right) is 

computed and compared to the two others. The procedure 

consists in scanning the sampled time block with a short 

window of 2n+1 samples. At each sample (i) of the time 

signal, the Kurtosis of a window C centered on i (i-n; i+n) is 

computed and compared to the ones calculated on windows 

located to the left L (i-3n; i-n) and right R (i+n; i+3n) of the 

current sample (i). Figure 1 shows an example for a time 

sample centered at i = 15, and a window length of 2*n+1 = 5; 

the central window is represented in orange and the windows 

to the right and left are in green. 

 

Once the Kurtosis has been evaluated for each of the three 

windows, a classification and selection is conducted: 

 If the energy of the central window is greater than the two 

others into the left and right window, we declare the 

presence of a shock and the peak amplitude of the signal at 

position (i) is assigned to the shock extractor.  

 Otherwise, there is no shock and the shock extractor takes 

a nul value. 

 

Then, the scan continues and the current position value is 

incremented to i+1 (figure 1-b). The procedure continues until 

the value i= Nmax-(3n+1) is reached, where Nmax is the total 

number of samples in our signal, and n is very close to  the 

half-length of the short time window.  

 

The size of the windows (R, L and C) highly depends on the 

acquisition parameters, mainly the sampling frequency, as 

well as the nature of the impact. Ideally, the window will be 

the same as the length of the transient response to an impact 

[16]. If we consider that the transient response is stabilized at, 

a level close to 4% of the maximum amplitude, the length of 

the windows may be defined as: 

1

2 n

T
f
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with  , the damping rate and fn, the dominant bearing 

resonance (Hz). 

 

It is usual to consider a bearing damping rate of 5%  and 

accordingly with the bearing size a dominant natural 

frequency between 3 and 5 kHz [9, 16]. We have tested the 

natural frequency of the bearing SKF 1210 at 4 kHz. This 

gives a T equal to 0.0025 s.  

 

The length of the time window is: 
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where t is the time increment and fe, the sampling 

frequency. 
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By considering a sampling frequency of 48 000 Hz, we 

obtain 2n = 120 samples. 

 

A Hamming window is applied to each shock with a width 

equal to the shock length plus twice the short window length 

defined by the shock filter.  The different steps of the signal 

processing are described in Fig. 2. 

 

 

 

 

 

 
 

Fig. 2 Signal processing for shock filter 

 

III. TIME ANALYSIS OF THE SHOCK SIGNAL 

 

The method previously described was applied on two 

signals recorded on two defective rolling-element bearings 

turning at a speed of 1750 RPM, one with an inner race spall 

of 0.18 mm and another of 0.56 mm.  The results are shown 

on Fig. 3 and 4, respectively.  

 

By computing the ratio of Crest Factor (CF) of the original 

signal on the CF of the Shock filter (SF), it is then possible to 

determine the proportion (CFR) of shocks (%) present in the 

original signal. Table 1 shows a summary of the results. This 

new descriptor (CFR) gives thus an indication on the severity 

of damage. 

 

IV. THE TIME-FREQUENCY ANALYSIS OF THE SHOCK SIGNAL 

By applying a Short Time Frequency Transform (STFT) to 

the shock signal, it is then possible to determine the 

frequencies at which the shocks occur. This is particularly 

useful when the source of shocks must be identified since the 

STFT applied to the shock signal allows for determining 

which frequency range is excited by shocks.  

 

 

 
Fig. 3 Original and shock signals for a defect of 0.18 mm 

 

 

 

 
Fig. 4: Original and shock signal for a defect of 0.56 mm 

 

Fig. 5 shows the Fourier transform of the signal processed on 

Fig. 4. The STFT analysis from the shock signal revealed to be 

clearer than those from the original signal (Fig.6). 
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Tab. 1 Computation of the shock/signal ratio 

 Original 

(0.18 mm) 

SF 

(0.18 mm) 

Original 

(0.56 mm) 

SF 

(0.56mm) 

Peak 1.51 1.51 2.87 2.87 

RMS 0.33 0.21 0.46 0.38 

CF 4.57 7.19 6.24 7.56 

CFR  63.6 %  82.6 % 

 

As expected, the shock spectrum contains most of its 

energy in the high frequency range. The time-frequency 

analysis is thus very useful for identifying the natural 

frequencies excited by the transient shocks and the modulation 

frequencies cause by the defect.  

 

 
Fig. 5 Time-frequency analysis of the shock signal 

 

V. THE ENVELOP ANALYSIS OF THE SHOCK SIGNAL 

The bearing frequencies that are excited by a defect are 

described accordingly with the bearing geometry [7]. At the 

second stage of degradation, these frequencies appear in 

modulation of the bearing natural frequency [6]. 

 

The Fundamental Train Frequency (FTF) reveals a 

problem on the bearing cage and appears usually in 

modulation of other bearing frequencies. It is close to 40% of 

the rotor angular speed. Eq. (8) is only true if the outer race is 

fixed. 
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where Bd is the ball diameter; Pd, the diametral pitch;  , 

the contact angle; and  , the rotor angular  speed.  

 

 

 
 

Fig. 6 Time-frequency analysis of a signal of a defective bearing 

(0.56mm) a) before and b) after applying SF 

 

The Ball Pass Frequency on Outer race (BPFO) and the 

Ball Pass Frequency on Inner ace (BPFI) appears with their 

harmonics when a defect develops on outer or inner race 

respectively. 
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The Ball Spin Frequency (BSF) reveals a defect on the 

balls. A defect on balls will excite 2BSF, since it strikes the 

inner race and the outer race in the same revolution. 
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These modulation frequencies can be easily identified from 

an envelope analysis or Hilbert transform [9]. The envelope 

analysis (also called amplitude demodulation) converts the 

Natural 

frequency  

Defect size: 

0.56mm 
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modulation in amplitude or phase from a high frequency range 

to a low frequency range.  

 

Fig. 7 shows an example of an envelope analysis 

performed on the shock signal of Fig.4 for a defect of 0.56 

mm on the inner race.  

 

 
Fig. 7 Envelope spectrum of the shock signal 

 

The presence of the Ball Pass Frequency Inner race (BPFI) 

and one of its 2
nd

 harmonic in the shock spectrum indicate that 

the shocks are caused by a small defect on the inner race of the 

rolling-element bearing. The results obtained by this technique 

are less influenced by noise and interfering harmonics, which 

is very desirable when the signal-to-noise ratio is small. 

VI.  DETECTION OF BEARING SLIPPING 

Indeed, in rotating machinery, one of the most 

complicated cases is observed when shocks are involving, in 

the same time, a damaged gear and bearing, and which appear 

in the same frequency band [17]. It is very important to note 

that defective gears will generate perfectly synchronous 

shocks, contrary to a bearing which even turning at constant 

speed will produce shocks which will be slightly 

asynchronous due to the slip phenomenon in the bearing. The 

shock filters allows for differentiating the perfectly 

synchronous shocks from the pseudo synchronous ones. 

 

Two types of signals were generated: with and without slips.  

o A basic signal which simulates a signal without slip, has 

been generated with a repetitive shock having a central 

frequency of 2500Hz with an amplitude of 7g and which is 

repeated at a frequency of 30 Hz. The time length is 4 

seconds.  

o A signal containing slip has been created by adding to the 

basic signal, a random frequency variation of 1 % to the 

repetition frequency. Thus the repetition frequency varies 

randomly between 29.7 and 30.3 Hz. This signal could 

simulate a bearing defect containing a slip.  

 

A random signal of amplitude of 5g has been added to each 

one of these two signals. With a signal noise ratio of about 

30%, the challenge consists in differentiating the two signals, 

even when they are drowned into the noise. The analysis of 

these two signals was initially done using the conventional 

signal processing methods.  

 

Table 2 shows the usual scalar descriptor values for each 

signal. In spite of a small increase (6%) in certain scalar 

descriptors for signal with slip, the indicators do not allow us 

to conclude if or not the signal is slightly disturbed. 

 

Time Indicators No slip With slip 
Relative 

difference (%) 

Kurtosis 10.4 10.62 2,07 

Crest Factor 6.11 6.49 5,85 

RMS 1.7 1.7 0 

Peak 10.42 11.09 6,04 

IF 9.56 10.21 6,36 

SF 1.56 1.57 0,63 

Tab. 2  Scalar descriptors 

 

Even by analyzing each spectrum (Fig. 8) which indicates 

changes from which the cause is difficult to find, it is clear 

that it’s very difficult, if not impossible, to distinguish the 

synchronous from the asynchronous shocks. 

 

The method developed for classifying shocks and detecting 

slip, uses the normal law statistical method [11]. A random 

input x of mean value m and standard deviation   follows a 

normal law N (m, 2
). Its density function is : 
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Fig. 8 Spectral analysis of signals with slip and no slip 

 

By recording the period separating the shocks as determined 

by the shock filter, a population is defined after a sufficient 

lapse of a time. Having stored N periods separating the 

shocks, it is possible to trace the density of probability of 

period (or frequency) variation.   
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Figure 9 show the application of this new method for a signal 

slightly noised. The X-coordinate represents the period of 

shocks extracted from the filter and the Y-coordinate, the 

density of probability of period. The signal contains shocks at 

30 Hz, thus corresponds to a period of 0,033s. 

 

 
Fig. 9 Probability Density of shocks for a slightly noised 

signal 

 

It can be noticed that a signal without slip reveals a high 

density of probability at its period and the probability to have 

a shock at the given frequency is 98.3%. On the other hand, a 

signal with slip presents a variation of its frequency and its the 

probability to have a shock at the given frequency is only 

22.6%.  

 

When the signal is strongly noised, a certain dispersion of 

the density of probability of period is revealed even for 

perfectly synchronous shocks (figure 10), because shocks are 

also detected at other periods, due to the added random 

component. This slightly disturbs the detection process of slip. 

However, it clearly appears that the density of probability is 

much higher for a signal containing synchronous shocks, even 

if the signal is strongly disturbed. 

 

Consequently, we propose as a possible decision criterion 

able to be used as a follow-up parameter within the framework 

of a maintenance program, to monitor the probability to have a 

frequency of shocks. This parameter is extracted from the 

shock filter. It is important to note that the precision is highly 

correlated to the length of the recorded signal. Indeed, more 

shocks are in the signal, more the statistical population is large 

and thus, more the density of probability is precise. It is 

necessary to also note that the sampling frequency must be 

sufficiently large to detect the light drift in time, of the 

asynchronous pseudo shocks. If the shock derives with td, for 

optimal results, a 5 times smaller sampling period is 

recommended. 

 

 
Fig.10 Probability density of shocks in a highly noised 

signal 

 

Using this shock classification method, an application on 

experimental data coming from defective gears and bearings 

has been conducted.  

 

The gears signals were taken from the test bench IDEFIX 

[18]. The test consisted in running the bench until complete 

destruction, with a daily measurement. The bench 

characteristics are described in table 3. The gear has one 

defective tooth and the signal has been token 2 days before the 

bench destruction.  The shock filter has been applied on the 

time signal. 

 

The other signal represents the application of the shock 

filter on a signal from a bearing with defect. The defective 

bearing signal comes from the CWRU data base [19]. The 

bearing is an SKF 6205 with a defect of 0.54mm on the 

external race, the speed was 1730 RPM. Its BPFO is 103 Hz 

(period = 0.0097 sec). The period of its second harmonic is 

0.017 sec. 

 

speed (tr/min)  1000 ( period = 0.06 sec) 

Torque (daN.m)  200  

Gear mesh frequency (Hz) 333 ( period 0.003 sec) 

Gears  1st Gear  2
nd

 Gear (tested one) 

Teeth number 21  20  

Tab. 3  Gear bench characteristics. 

 

The density of probability of shocks periods for both signals 

is shown in Fig. 11. The analysis of bearing signal revealed 

the presence of  peaks with a variable period T=1/BPFO for 

the bearing (103 Hz) and at the second harmonic of the shaft 

speed that is due to misalignment.  For the gear, the 

No slip 

No slip 

With slip 

with slip 
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frequencies detected are the rotor speed (T=1/f0 for the gear 

(16.6Hz) : one shock per revolution) and with a small 

amplitude the gear mesh (T=1/20X 16.6). It’s clearly 

demonstrated the dispersion induced by the slip at BPFO in 

the case of the bearing. This dispersion disappeared in the case 

of defective gears. 

 

 
Fig. 11 Shocks probability density  

a) bearing ; b) gears. 

 

VII. DETECTION OF MULTIPLE DEFECTS  

 

When a bearing exhibits multiple defects, it is very difficult 

to evaluate the severity of each localized defect. The Shock 

Filter (SF) will help to distinguish the signals coming from 

each defect and hence to diagnose the severity of each. Two 

defects have been simulated on the outer race of a SKF 1210 

ETK9 bearing operating at 720 RPM: one of   1mm @ 0deg 

and the other of 0,8 mm @ 180deg. It can be noticed that 

introducing two defects at 180 degrees represents the most 

difficult case to identify. Thje forces produced bu each defects 

are shown in Fig. 12. 

 
Fig. 12 Forces dues to defects at 180o.  

 

The acceleration  response is shown in Fig.13-a and it can be 

noticed that it is very very difficult to diagnose a double 

impact from this figure.  
 

 
b) filtered signal 

 
c) Shocks coming from the first defect 

 

 
d) Shocks coming from the 2nd defect 

 

Fig. 13 Response due to two impacts.  

a) Original signal, b) filtered signal, c) Response due to the 

first impact; d) response due to the 2nd impact. 

 

Fig 13-b shows the filtered response with SF. It is easy from 

this figure to distinguish and to extract the shocks coming 

from each impact. Fig 13-c shows the filtered response dur to 

the first defect and Fig. 13-d shows the filtered response due 

to the 2
nd

 defect. 

 

All this information has been introduced in a neural network 

[20]. Two cases have been considered, one by analyzing the 

a) With slip 
1/BPFO 

1/f0 

1/2f0 

b) No slip 
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original signal ( Fig. 13-a), and the other by analyzing the each 

filtered signal ( Fig 13-c and 13d).  The results are ahown in 

Fig. 14. 

 

 
Fig 14. Severity of damage by neural network 

 

In the first case, the diagnosis was over-estimated the size of the 

defect neither to distinguish each defect. In the second case, the 

severity of each defect was very well identified with a maximal error 

of 3%. 

VIII. CONCLUSION 

 

The present article describes the development of a signal 

processing technique in order to extract the shock content 

from a vibratory signal. It is called the Shock Filter (SF). This 

technique provides a cleaned up signal corresponding only to 

the contribution of the shocks, after having removed all the 

other components in the signal. A practical application is 

presented in order to illustrate its use and efficiency in 

diagnosis a defective rolling-element bearing. It is seen that 

this new tool provides an estimate of the severity of damage 

by comparing the shock signal from the original one. 

Furthermore the STFT of the shock signal reveal the natural 

frequencies of the system that are excited and an envelope 

analysis around the natural frequency range reveal the 

modulation frequencies that are characteristics of the source of 

damage. This method permits to distinguish between perfectly 

synchronous signals from signals with a small slip. The 

technique is very simple and powerful. It’s build on basic 

statistic concepts, namely the density probability to have a 

shock period. This information is extracted from the shock 

filter. This new method has been applied with success to 

simulated signals and to experimental signals coming from 

gear and bearing signals and a comparative study of usual data 

processing methods showed that they were unable to 

distinguish a small slip. Consequently, we propose as a 

possible decision criterion able to be used as a follow-up 

parameter within the framework of a maintenance program, to 

monitor the probability to have a frequency of shocks, after 

filtering. The Shock Filter allows to identify the source of each 

impact in the case of multiple defects and the introduction of 

the filtered signals into a neural network allows for evaluating 

the severity of each defect. 
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