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Abstract—The paper deals with kinematic and dynamic analysis 

of the feeding device mounted on the Czech 152 mm Self-propelled 

Howitzer mod. 77 (152 mm SPH M77). Kinematic analysis of the 

feeding device has been worked out using MATLAB software. The 

dynamic problem has been solved using Lagrange multiplier method 

applied for closed chain multi-body system. After that both kinematic 

and dynamic tasks has been simulated using of Rigid Dynamic 

component of software ANSYS with Finite Element Method (FEM).  
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I. INTRODUCTION 

HE feeding device with two degrees of freedom is used in 

the Czech 152 mm self-propelled cannon howitzer Mod. 

77 - see Fig. 1 (view in the horizontal plane) and Fig. 2 (view 

in the vertical plane), see [2], [4], and [5]. The feeding device 

for projectiles and the feeding device for propellant charges in 

cases are mounted to the right and left cradle shafts, see Fig. 3. 

Their construction enables the feeding at any value of 

elevation, see [4], [9], [10], and [20]. After releasing of the 

feeder loading tray the feeder arm rotates and grips the 

projectile in the conveyer – the angle 1

52 . Then it rotates in 

the opposite direction which describes the angle 2

52  into the 

vertical plane going through the barrel axis. Afterwards the 

loading tray is rotated by means of the rotating arm into the 

position when the direction of the barrel axis equals to the 

direction of the axis of the shell or the case – the angle 21 . 

The rotation in the horizontal plane (in the range 52 ) is 

possible using of the linear hydraulic motor having the rack 

bar at the end of the piston with transformation to the rotation 

by the gear wheel. The hoisting mechanism for the second 

motion in the vertical plane is driven by the hydraulic linear 

motor and then it is necessary to know relations between 

kinematic parameters of the hydraulic motor piston rod and 
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the rotation of the arm
21 .  

 
Fig. 1 View of the feeding device in the horizontal plane 

 

 
Fig. 2 View of the feeding device in the vertical plane 

 

The feeding mechanism has the space positioning and the 

kinematic chain is formed with two rotation locomotor units 

and structure scheme is x zR R according to [7], [15], [16], 

and [18]. It means that the feeding device has revolute joints. 

Therefore only simple relationships describe the link 

transformations, see [18], [23], and [25]. In order to be solved 

this space problem; it is possible to perform the following 

steps. 

Firstly, it is necessary to solve the both individual parts of 
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the feeding mechanism that drive moving sections in the 

vertical and horizontal plane. The vector method has been 

used for it in [2] and theory has been published in [7], and [18] 

for example.  

Secondly, the outputs of the previous results are used as the 

inputs for the space problem of the feeding mechanism where 

the mechanics of manipulation equipment has been used. 

Feeding process of the propellant charge is performed 

similarly to the projectile feeding, but by the left feeding 

device on the opposite side as it is shown in Fig. 3 where both 

devices are depicted. 

 

 

Fig. 3 Scheme of both feeding devices 

 

The objects in Fig. 3 are: barrel - 1, elevation block - 2, 

projectile - 3, feeding device arms for propelling charge - 4 

and for projectile - 7, driven component of feeding device 

(hydraulic piston- cylinder) - 5, frame in the upper carriage - 

6, propellant charge in case – 8, feeding tray for case - 9.  

 

According to [6], [15], [18], [21], and [22] have been 

defined the 4 x 4 transformation matrices for both rotation 

movements with respect to the translation of the origin of 

every coordinate system. These matrices are called 

homogeneous transformations and their advantageous is that 

they describe both position and orientation. 

Fig. 4 describes the motion of the projectile during whole 

feeding process in course of the loading into the minimal 

elevation angle -4° when the trajectory is the largest, i.e. 94°. 

The trajectory of the propellant charge placed in own tray can 

be visualized by means of similar graph and the same way.  

After the kinematic solution of the feeding device the 

dynamics follows to obtain reaction forces in connections 

between the kinematic elements.    

 

 
Fig. 4 Motion of the projectile during feeding 

 

In the following section there will be given a summary of 

the mathematical background for establishing matrix form of 

dynamic function system of a closed chain robot using 

Lagrange multiplier function how it has been published in [6], 

[8], [17], and [26] with helping new attitude to the expressions 

of Lagrange equations with multipliers for constrained 

multibody systems.  

II. MATHEMATICAL BACKGROUND OF DYNAMICS  

Let us consider without demonstration the following 

lemmas:  

 

1 2 ...
T

nx x x   x - vector, 

 
nx , ( ) x - function of variable x.  

 

Partial derivation of scalar function ( ) x  by vector 

variable x is defined as follows:  

 

 
1 2

1
...

T
nx x x

   


    
    

     x x
, (1) 

 

and 

 

1 2 ...
T

ma a a   a - vector, ( ) ma x . 

 

Then the partial derivative of function vector a with respect 

to the vector x is here defined as the following matrix: 
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  
       
      

x

a
x

x

x

. (2) 

 

( ) m pA x is function matrix, where 
nx is vector. 

Matrix A can be presented as follows: 

 

11 12 1

21 22 2

1 2

1 2

...

...
= ...

... ... ... ...

...

p

p

p

m m mp

a a a

a a a

a a a

 
 
 

    
 
 
 

A a a a . (3) 

 

Partial derivation of function matrix A by vector variable x 

is defined as follows, see [17]: 

1p11 12

221 22
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...

( ) ...
...

... ... ... ...

...

p
p

mpm m
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aa aA x

x x x
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x x x

 (4) 

  Let 
m pA , and 

q sB are matrices and product of 

two matrices C is defined as follows: 

 

m s  C A B ; 
1

p

ij ik kjk
c a b


 . (5) 

 

Let 
q sB is matrix, ija is constant, i=1,…, m; j=1,…,p, 

then the matrix ija 
 B is defined as follows: 

 

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

p

p mq ps
ij

m m mp

a a a

a a a
a

a a a



 
 
 

     
 
 
 

B B B

B B B
B

B B B

. (6) 

 

Let us denote nI as the n x n identity matrix. 

If 
m pA and 

q sB are matrices. Then Kronecker 

product of two matrices A and B is marked as A B . It is 

matrix that has size mq ps and it is defined and written by 

the following formula, see [6], [8], [17], and [26]: 

 

11 12 1

21 22 2

1 2

...

...
=

... ... ... ...

...

p

p mq ps
ij

m m mp

a a a

a a a
a

a a a



 
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 

     
 
 
 

B B B

B B B
A B B

B B B

. (7) 

 

When
m pA and 

q sB are function matrices of 

vector x. Then the derivation of product of two matrixes is 

defined: 

 

 
( ) ( )

( ). ( ) ( ) ( )n

  
    

  

A x B x
A x B x B x I A x

x x x
. (8) 

 

The consequences following from from (8) are following: 

 

If
m pA , 

pb and 
nx then: 

 

 
( )

( ). ( )n

  
    

  

A x b
A x b b I A x

x x x
. (9) 

 

If 
pb , 

nx and ( ) x is scalar then: 

 

 
( ) ( )

( ). ( ) ( ) ( )n


 

  
    

  

b x x
b x x x I b x

x x x
. (10) 

 

If ( ) x and ( ) x are scalars, then: 

 

 
( ) ( )

( ). ( ) ( ) ( )n

 
   

  
    

  

x x
x x x I x

x x x
. (10) 

 

If
ma , 

mb and
nx , then: 

 

( )T T
T

n

  
    

  

a b a b
b I a

x x x
. (11) 

 

Using Kronecker product, partial derivation of function 

matrix by vector variable is defined as follows: 

 
.( ) ( )

( )n

 
 

 

A x A x
I x

x x
. (12) 

III. MATRIX FORM OF LAGRANGE MULTIPLIER FUNCTION 

Now mathematical background presented above will be 

used for establishing of the matrix form of the Lagrange 

multiplier function for a multi-body system. 

The Lagrange multiplier function, see [17], [24] for 

example, can be written by using of the T kinetic energy and Π 

potential energy as follows: 

 

d

d

T T T

TT T

t

       
        

       
fJ

q q q
 .  (13) 
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Let us consider multi-body system contains p rigid bodies, f 

degrees of freedom, r holonomic constraints, and s linear 

nonholonomic constraints. Position of the system is 

determined by m generalized coordinates 1 2( , ,..., )mq q qq , 

where f m . From holonomic constraints we receive r 

constraint equations in the following form: 

 

 1 2( , ,..., ) 0i mf q q q   , 1,...,i r .  (14) 

 

Linear nonholonomic constraints are presented by s 

following equations: 

 

0 0jk k ja q a  , 1,...,j s .   (15) 

 

Number of independent generalized coordinates of the 

system is: 

.n m r   

Number of degrees of freedom of the system is: 

( )f n s m r s     . 

The kinetic energy of the system is as follows, see [7], and 

[16]: 

 

1 1
( ) ( , )

2 2

T TT  q M q q q b q q , (16) 

 

where: ( , ) ( )b q q M q q . 

The M(q) inertia matrix is square, symmetric. It is 

calculated as follows using the ,Ti RiJ J  translational and 

Jacobian matrices, see [17], [25]: 

 

1
( ) ( )

p T T
i Ti Ti Ri i Rii

m I


 M q J J J J .  (17) 

 

The Lagrange equation of nonholonomic constraint system 

is written as follows: 

 

 1 2 3

d
( )

d

T T
T T

t

    
       

    
f f f g q

q q
 (18) 

 

where:  

( )

T
 

  
 

g q
q

, 

1 1 ...
T

m    f , 2
T T

    


f

f
f J

q
, 3

T f A  , 

where: ika   A , 

f1 is exterior force vector equivalent to generalized 

coordinates q1, q2, q3, q4. 

The partial derivation of the kinetic energy in (18) with 

respect to the vector q is given: 

 

 
1 1

( ) ( )
2 2

T
T T

m

T     
    

     

q b
q b b I q

q q q q
, (19) 

where 

( ) ( )
T

T T T
m


   



q
b I b Mq q M

q
, 

( )
( ( ) ) ( ) ( )T T T

m

    
    

    

b M q q
q q M q q q q I M q

q q q q
, 

where: 
( )

0





M q

q
; m






q
I

q
. 

Then the last member in (19) is: 

 

( ) ( )T T T
m


 



b
q q M q I q M q

q
 (20) 

 

By substituting (20) into (19), we obtain: 

 

1 1
( )

2 2

T T T TT 
    
  

q b q M q M q M
q q

, (21) 

 
T

T 
 

 
M(q)q

q
; 

T
d T

dt

 
 

 
M(q)q + M(q)q

q
. (22) 

 

The second component used in the derivation of the kinetic 

energy with respect to q
 
is determined by next way:  

 

1 1
( ) ( )

2 2

T
T T

m

T     
    

     

q b
q b b I q

q q q q
 

 

1 1 ( )
( ( ) ) ( ) ( )

2 2

T T
m

   
    

   

M q q
q M q q q q I M q

q q q
 

 

1 ( )
( )

2

T
m


 



M q
q q I

q
. (23) 

 

1 ( ) 1 ( )
( ) ( )

2 2

T T T

T
m m

T       
        

       

M q M q
q q I q I q

q q q
. 

 (24) 

 

By substituting (22), (24) into (18) we receive the following 

formula: 

 

1 ( )
( )

2

T T

m

    
    

    

M q
M(q)q + M(q)q - q I q

q q
 

f
T T  J A  . (25) 
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1 ( )
+ ( )

2

T T

m

      
      

      

M q
M(q)q M(q) - q I q

q q
  

f
T T  J A  . (26) 

Let us note, see [17]: 

 

( ) 1 ( )
( , ) = ( ) - ( )

2

T

m m

  
  

  

M q M q
C q q I q q I

q q
. (27) 

 

Finally by substituting (27) into (26) we receive the motion 

equation in matrix form: 

 

f+ ( , ) ( ) T T   M(q)q C q q q g q J A  . (28)   

IV. ESTABLISHING DYNAMIC FUNCTION SYSTEM OF THE 

FEEDING DEVICE   

Now the motion equations of the feeding device will be 

established. Dynamic and kinematic scheme of the device is 

shown in Fig. 5 where m1, m2, m3, m4, I1, I2, I3, and I4 are 

masses and moments of inertia with respect to axis through 

gravity center of linkage bar 1, 2, 3, and 4 respectively. P is 

projectile gravity force and F is exterior force (controlled 

force rule in hydraulic motor hoisting the projectile into the 

required elevation angle). 

 
Fig. 5 Dynamic scheme of the feeding device with 2 DOF 

Point S is gravity center of hydraulic piston 2 in the 

hydraulic motor. 

The generalized coordinates are 

1 2 3 4 1 2 3 4

T T
r q q q q         q .                   (29) 

 

The coordinates of linkage bars gravity centers are set as 

follows: 

 

1 1 1 1 1 1 1 1 1cos ; sin ; 0;x l q y l q z q     

2 2 1 2 2 1 2 2 2cos ; sin ; 0;x q q y q q z r q     

3 1 3 3 3 2 3 3 3 3 3cos ; sin ; 0;x L l q y L l q z q     
        (30)

 

4 1 4 3( cos )cos ;x L a b e q q     1a b a   

4 2 4 3

4 4 4 4

( cos )sin ;

sin ; .

y L f d a b e q q

z c e q q

     

  
 

 

The translational Jacobian matrices used in (17) are expressed 

as: 

 

1 1

1
1 1 1

sin 0 0 0

cos 0 0 0

0 0 0 0

T

l q

l q

 
  

 
 
  

r
J

q
,                                     (31)    

  

2 1 1

2
2 2 1 1

sin cos 0 0

cos sin 0 0

0 0 0 0

T

q q q

q q q

 
  

 
 
  

r
J

q
,                          (32) 

 

3 3

3
3 33

sin0 0 0

cos0 0 0

0 0 0 0

T

l q

l q

 
 

   
  

 

r
J

q
,                                    (33) 

 

1 4 3 1 4 3

4
1 4 3 1 4 34

4

( cos )sin ( sin )cos0 0

( cos )cos ( sin )sin0 0

cos0 0 0

T

a e q q a e q q

a e q q a e q q

e q

   
      

  
 

r
J

q
. 

                                                                                             (34) 

 

The rotational Jacobian matrices used in (17) as well are 

written as follows: 

 

1
1 1

1

0 0 0 0 0

0 0 0 0 0

0 0 01

R

q

  
  

             

w
w J

q
,                         (35) 

 

2
2 2

1

0 0 0 0 0

0 0 0 0 0

0 0 01

R

q

  
  

             

w
w J

q
,                        (36) 

 

3
3 3

3

0 0 0 0 0

0 0 0 0 0

0 0 01

R

q

  
  

             

w
w J

q
,                        (37) 

 

4
4 4 4

0 0 0 0 0
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The inertia matrix M is: 
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and after arrangements the inertia matrix is given by the next 

formula: 
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 (40) 

 

According to (27) it is calculated the derivation of function 

matrix M(q) with respect to q as follows: 

 

( )
, 1,...,4; 1,...,16ija i j


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M q

q
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where: 
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3 0; 13,...,16ja j   

2
4 4;16 4 4 40; 1,...,15; 2 cos sinja j a m e q q    . 

 

Using Kronecker product, according to (27), we calculate 

the Coriolis/Centripetal matrix ( , )C q q , see [17]: 
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 (41) 

 

The potential energy of the feeding device is given: 
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By derivation of the potential energy is determined member   

 g q : 
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The  constraint equations of linkage bars are written as: 
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By substituting (40), (41), (43), and (44) into (28) we 

receive motion equation system of the device as follows: 
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The equation of motion of the feeding device (46) and two 

constraint equations (47) have been used for finding 

unknowns q1, q2, q3, q4, 1, 2. 

Structural characteristics of the device such as moment of 

inertia with respect to the global coordinate system located at 

point B in Fig. 5, mass of the device components are shown in 

the Table I. The characteristics have been calculated using 

ANSYS Workbench software.  

Using axial transformation formulas it is possible 

completely to calculate moment of inertia of each link with 

respect to its rotational axis. These moments of inertia are 
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used as input data for solving equation system (46) and (47). 

In (46) 1, 2, 3, 4 there are exterior forces (controlled 

forces and moments) with respect to generalized coordinate 

respectively, see [19], [21], [22], [23], and [25]. Exterior 

forces are determined from results of dynamic analysis of 

feeding devices using hydraulic motors or measurement 

results of pressure in hydraulic cylinder.  

 
TABLE I 

STRUCTURAL CHARACTERISTICS OF LINKS 

Symbol Quantity Value and unit 

m1 mass of link 1 4.117 kg 

I1xx x-axis inertial moment of link 1  3.504e-2 kg.m2 

I1yy y-axis inertial moment of link 1  2.391e-2 kg.m2 

I1zz z-axis inertial moment of link 1  3.511e-2 kg.m2 

m2 mass of link 2 2.092 kg 

I2xx x-axis inertial moment of link 2 1.054e-2 kg.m2 

I2yy y-axis inertial moment of link 2  4.160e-2 kg.m2 

I2zz z-axis inertial moment of link 2  1.058e-2 kg.m2 
m3 mass of link 3 18.663 kg 

I3xx x-axis inertial moment of link 3 0.238e-2 kg.m2 

I3yy y-axis inertial moment of link 3  5.036e-2 kg.m2 
I3zz z-axis inertial moment of link 3  0.278e-2 kg.m2 

m4 mass of link 4 16.077 kg 

I4xx x-axis inertial moment of link 4 0.262e-2 kg.m2 

I4yy y-axis inertial moment of link 4  0.284e-2 kg.m2 

I4zz z-axis inertial moment of link 4  0.531e-2 kg.m2 

m5 mass of projectile 43.500 kg 

I5xx x-axis inertial moment of projectile 1.312e-2 kg.m2 

I5yy y-axis inertial moment of projectile 0.143e-2 kg.m2 

I5zz z-axis inertial moment of projectile 1.312e-2 kg.m2 

X1 gravity center coordinate of link 1  -0.134 m 

Y1 gravity center coordinate of link 1  -0.257 m 

Z1 gravity center coordinate of link 1  3.425e-2 m 

X2 gravity center coordinate of link 2 -6.999e-2 m 

Y2 gravity center coordinate of link 2  -0.181 m 

Z2 gravity center coordinate of link 2  3.425e-2 m 

X3 gravity center coordinate of link 3  7.620e-2 m 

Y3 gravity center coordinate of link 3  -0.140 m 

Z3 gravity center coordinate of link 3  3.115e-2 m 

X4 gravity center coordinate of link 4  0.423 m 

Y4 gravity center coordinate of link 4  -0.169 m 

Z4 gravity center coordinate of link 4  1.710e-2 m 

X5 gravity center coordinate of projectile 0.53 m 

Y5 gravity center coordinate of projectile -0.129 m 

Z5 gravity center coordinate of projectile 8.425e-2 m 

 

V. DYNAMIC AND KINEMATICS SIMULATION OF THE FEEDING 

DEVICE USING ANSYS  

The geometry model of the feeding device established in 

ANSYS is shown in Fig. 6. The motion stage scheme of the 

feeding device is represented in Fig. 7. 

 

 
 

Fig. 6 Feeding device established in ANSYS 

1- cylinder; 2- piston; 3- arm; 4- forearm; 5- projectile;  6- frame 

The first stage: the forearm rotates in the horizontal plane to 

seize the projectile from the conveyer. The second stage: the 

forearm rotates in the reversal direction and takes the 

projectile into the vertical plane containing barrel axis. The 

third stage: the hydraulic cylinder-piston is operated and 

makes the projectile to rotate in the vertical plane to the 

required elevation angle.  

 

 
 

Fig. 7 Motion stage scheme of the feeding device 

 

After simulation of the feeding device with input data 

shown in Fig. 7 the results are depicted in Fig. 8 – Fig. 15. 
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Fig. 8 Velocity of projectile  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Acceleration of the projectile  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Displacement of projectile during feeding process  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Reaction force of forearm revolute joint versus time 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Reaction force of revolute joint between cylinder and frame  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Reaction force of revolute joint between piston and arm  

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 1 2 3 4

ve
lo

ci
ty

 c
om

po
ne

nt
 o

f p
ro

je
ct

ile
 (m

/s
) 

time (s) 
x axis velocity y axis velocity
z axis velocity

-400

-200

0

200

400

600

800

1000

1200

0 1 2 3 4

re
ac

tio
n 

fo
rc

e 
(N

) 

time (s) 
x-axis component y-axis component
z-axis component

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

0 1 2 3 4

ac
ce

le
ra

tio
n 

(m
/s

2 )
 

time (s) 
x axis acceleration y axis acceleration
z axis acceleration

-6000

-4000

-2000

0

2000

4000

6000

8000

0 1 2 3 4

re
ac

tio
n 

fo
rc

e 
(N

) 

time (s) 

x-axis component y-axis component
z-axis component

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4

re
ac

tio
n 

fo
rc

e 
(N

) 

time (s) 

x-axis component y-axis component
z-axis component

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0 1 2 3 4

m
ot

io
n 

of
 p

ro
je

ct
ile

 (m
) 

time (s) 
x axis position y axis position z axis position

INTERNATIONAL JOURNAL OF MECHANICS

Issue 4, Volume 5, 2011 368



 

 

Motion of projectile in Fig. 10 corresponds with input data 

shown in Fig. 7. For example y-axis motion, from zero to 2 

second, y-coordinate is const, because projectile moves in 

horizontal plane. Afterwards the projectile moves in the 

vertical plane, so the y-axis coordinate increases to the 

maximal value where projectile is pushed into the cartridge 

chamber by the ramming device. 

  

Fig. 14 Reaction force onto the axis of piston  
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Fig. 15 Reaction moment of the revolute joint between 

 forearm and arm 

 

It is possible to use reaction force onto axis of piston 

presented in Fig. 14 and reaction moment of revolute joint 

between forearm and arm in Fig. 15 as controlled force for the 

dynamic problem. In this case instead of using input data as 

motion rules in Fig. 7 the  input data are used as the force rule 

affecting onto the piston, force direction coincides with piston 

axis and moment rule that affects onto the revolute joint 

between forearm and arm.  

It is possible also to use the linear velocity rule of the piston 

and rotary velocity rule of the forearm as input data for the 

simulation problem.  

In figures of the reaction force and moment period of time 

from 0 until 1 second there is the feeding device without the 

projectile. So values of the reaction force or moment are quite 

small. In this stage, the forearm of the device performs rotary 

motion to seize projectile or propellant charge from the 

conveyer. All stages are identical for both projectile and case 

with propellant charge movements. 

VI. CONCLUSION 

As the results of the calculations, we have obtained the 

courses of the main kinematical parameters, working space of 

the feeding mechanism, and the reaction forces in the feeding 

devices. The article broadens out possibilities of feeding 

devices designing using mechanics which has been applied in 

the robotics and manipulators theory, see [6], [7], [8], and 

mainly [17].  

As it is known, it is quite difficult to solve the dynamic 

problem of the specific industrial robot or manipulator as the 

weapon feeding device is. In many cases, although we have 

established motion derivative equation system of the robot, we 

also have to determine not only structural characteristics of the 

robot, such as linkage bar moments of inertia, gravity center 

coordinates, mass, but also exterior force rules (controlled 

rules), that ensures the robot operates as it has been designed. 

As a frame of this article the Rigid Dynamic component of the 

simulation software ANSYS has been used to solve the 

dynamic and kinematic problem of the feeding device. The 

simulation component operates on base of ANSYS-ADAMS 

interface, to provide user simulation tool for simulating multi-

body system effectively. 

The procedures used in this article will be applied in the 

Czech research institutes and in the University of Defence in 

Brno as additional teaching material for students of weapons 

and ammunition branch. Despite of this system is not up to 

date, the theory can be used during retrofitting of the system 

new propellant charges or fuses which change dimensions and 

weight and can caused malfunctions during loading due to 

greater length mainly loading automatically.        

The continuation of there presented results will be 

connected with the research of the weapon barrels as it begins 

in [11], [12], [13], and [14].  

This method enables to carry out analysis of vehicle 

vibrations on the loading process causing by the fire or during 

moving on the battlefield, see [1]. 
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