
 

 

  
Abstract—Research on solid particle flows has been quite 

intensive in the past decade.  The difficulties associated with accurate 
predictions of the interactions between the solid and surrounding 
fluid. Hence, in the present paper, we focus on the simulation of lid-
driven cavity flow containing a solid particle immersed in an 
incompressible fluid. In the present analysis, we adopt an Eulerian-
Lagrangian approach where the solid particle is treated as a point in 
the cavity. To achieve the accuracy, the numerical scheme for the 
fluid is properly chosen so that the resultant force on the solid particle 
can be accurately determined. Our aim is to seek further 
improvement on the fundamental knowledge of the trajectories of a 
solid particle in a lid-driven cavity. To broaden our understanding of 
the particle dynamics in the cavity, we also study the vortex structure 
in the cavity which directly influence the trajectories of solid particle. 
 
Keywords—Navier-Stokes, solid particle, cubic polynomial, 

numerical method, shear-driven cavity.  

I. INTRODUCTION 
OLID particle flows are of great importance because of 
their existence in industrial applications. Since the early 

works by researchers [1,2,3], a great deal of theoretical and 
experimental researches was dedicated to investigate this 
phenomenon. The fundamental interest comes from the 
concern to understand the interaction between the solid 
particle and surrounding fluid [4,5,6].  

On the other hand, wall-bounded solid particle flow, which 
is related to a number of natural phenomena and industrial 
applications [7][8], is also an interesting subject. A lot of 
numerical simulations have been conducted and still not fully 
resolved issue. To the best of authors’ knowledge, only Tsorng 
et al [9] reported details experimental results on the behavior 
of solid particles in lid-driven cavity flow from micro to 
macro size of particles. Other experimental works are Adrian 
[10], Han et al[11], Matas et al [12], Ushijima and Tanaka 
[13], Ide and Ghil [14], Hu[15], Liao[16], etc. However, 
according to these papers, high accuracy of laser equipments 
together with high-speed digital image capture and data 
interpretation system are required to obtain reliable 
experimental data. Such these high cost experimental devices 
will not be affordable if not supported by research fund.   

As an alternative approach, many researchers considered 
fully computational scheme in their investigations. Kosinski et 
al [17][18][19] provides extensive numerical results on the 
subject. From the behavior of one particle in a lid-driven 
cavity flow to thousands of particles in expansion horizontal 
 

 
 

pipe have been studied in their research works sheds new hope 
in understanding this problem. Kosinski et al applied the 
combination of continuum Navier-Stokes equations to predict 
fluid flow and second Newton’s law for solid particle. 

Definitely, a proper numerical model is required to predict 
the interaction between the fluid and solid particle. With a 
precise treatment, the trajectory of a solid particle in a 
complex fluid structure, which will be demonstrated in this 
paper, can be reproduced at certain level of accuracy. In this 
paper, a lid-driven cavity flow is used as a benchmark problem 
due to its simple geometry and complicated flow behaviors. It 
is usually very difficult to capture the flow phenomena near 
the singular points at the corners of the cavity. Therefore, the 
objective of this study is both to propose a numerical scheme 
that can be used to predict the interaction between the fluid 
and solid particle, as well as to analyze the flow structure in 
the lid-driven cavity.  

II. MATERIALS AND METHODS 
 

 
Fig. 1 Schematic geometry for lid driven fluid flow in a cavity. 
 

The physical domain of the problem is represented in Fig. 1. 
The top lid was constantly moved to the right direction at 
different constant velocity 

€ 

Uwall  to give the Reynolds number 

€ 

Re =UwallH υ( ) range from 100 to 1000. The aspect ratio was 
defined as 

€ 

H W . A solid particle was located just touching the 
moving top lid of the cavity. In the present analysis, the 
computations are conducted on a two-dimensional plane as 
shown in Fig. 1. This two dimensional approximation was 
undertaken based on a physical assumption that the behaviour 
of the lid driven vortex is relatively unaffected by the three 
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dimensionality of the flow.  
In present study, the governing equation of the 

incompressible and two-dimensional formulation is 
considered. Therefore, the governing continuity and x-and y-
momentum equations can be expressed as follow 
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In this work, the pressure term in the eqns. (2) and (3) are 
eliminated and rewrite in terms of vorticity function as follow 
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In terms of stream function, the equation defining the 
vorticity becomes 
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Before considering any numerical solution to the above set 
of equations, it is convenient to rewrite the equations in terms 
of dimensionless variables. The following dimensionless 
variables will be used here 
 

€ 
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ωH 2 Pr

υ

U =
u
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                (6) 

 

In terms of these variables, Eqns. (4) and (5) become 
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where the dimensionless parameter of Reynolds number, Re is 
defined as 

 

€ 

Re =
u∞H
υ

                        (9) 

In this section, we begin by recalling Eqn. (7) and it’s 
spatial derivatives, and split them into advection and 
nonadvection phases as follow 

Advection phase:  
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Nonadvection phase: 
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where 

€ 

Ωx = ∂Ω ∂x  and 

€ 

Ωy = ∂Ω ∂y . 

In the proposed method, the advection phase of the spatial 
quantities in the grid interval are approximated with 
constrained polynomial using the value the it’s spatial 
derivative at neighboring grid points as follow 
 

€ 

Fi, j X,Y( ) = a1
˜ X + a2

˜ Y + a3( ) ˜ X + a4
˜ Y +Ωx[ ] ˜ X 

                  + a5
˜ Y + a6

˜ X + a7( ) ˜ Y +Ωy[ ] ˜ Y +Ω
           (16) 
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where 

€ 

˜ X = X − Xi, j  and 

€ 

˜ Y = Y −Yi, j . The coefficients of 

€ 

a1 , 

€ 

a2 ,…

€ 

a7  are determined so that the interpolation function and 
its first derivatives are continuous at both ends. With this 
restriction, the numerical diffusion can be greatly reduced 
when the interpolated profile is constructed. The spatial 
derivatives are then calculated as  
 

€ 

Fx,i, j X,Y( ) = 3a1 ˜ X + 2a2 ˜ Y + a3( ) ˜ X + a4 + a6 ˜ Y ( ) ˜ Y +Ωx    (17) 
 

€ 

Fy,i, j X,Y( ) = 2a2 ˜ Y + a3( ) ˜ X + 3a5 ˜ Y + 2a6 ˜ X + 2a7( ) ˜ Y +Ωy  (18) 
 

In two-dimensional case, the advected profile is 
approximated as follow 
 

€ 

Ω i, j
n = Fi, j X +η,Y +ξ( )                     (19) 

 

€ 

Ωx, i, j
n = Fx,i, j X +η,Y +ξ( )                  (20) 

 

€ 

Ωy, i, j
n = Fy,i, j X +η,Y +ξ( )                  (21) 

 
where 

€ 

η = −UΔτ  and 

€ 

ξ = −VΔτ . The newly calculated spatial 
quantities are then be used to solve non-advection phase of 
Eqns. (13) to (15) and vorticity formulation of Eqn. (5). In 
present study, the explicit central finite different discretisation 
method is applied with second order accuracy in time and 
space. For example, the treatment for eqn. (5) is  
 
 
 

€ 

Ψi, j
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Ψi+1, j
n +Ψi−1, j

n

ΔX( )2
+
Ψi, j+1
n +Ψi, j−1

n +Ω i, j
n

ΔX( )2

2
ΔX( )2

+
2

ΔY( )2
                 (22)

     (24) In summary, the evolution of the proposed scheme consists 
of three steps. The initial value of 

€ 

Ω i, j
n , 

€ 

Ωx, i, j
n  and 

€ 

Ωy, i, j
n  are 

specified at each grid point. Then the system evolves in the 
following steps;

 1. Since the pre-advected value of 

€ 

Ω i, j
n , 

€ 

Ωx, i, j
n  and 

€ 

Ωy, i, j
n  

are known on each grid, the constrained interpolation process 
can be completed according to Eqns. (19), (20) and (21). 

 
2. After the interpolation, advection takes place, and 

€ 

Ω i, j
n* , 

€ 

Ωx, i, j
n*  and 

€ 

Ωy, i, j
n*  are obtained. 

 
3. The values of 

€ 

Ω i, j
n+1, 

€ 

Ωx, i, j
n+1  and 

€ 

Ωy, i, j
n+1  on the mesh grid 

are then computed from the newly advected values in step 2 
by solving the nonadvection phase of the governing equation. 
Then the interpolation and the advection processes are 
repeated. 

III. RESULTS AND DISCUSSION 
In this section, we begin with the validation of code written 

in MATLAB language for the present method. For this 
purpose, we carried out prediction of fluid flow in a cavity 
driven by shear force at the top boundary at unity aspect ratio. 
This type of flow configuration has been used as a benchmark 
problem for many numerical methods due to its simple 
geometry and complicated flow behaviours. It is usually very 
difficult to capture the flow phenomena near the singular 
points at the corners of the cavity.  

In the simulations, two values of Reynolds number, 100 and 
400 were set up defined by the height of the cavity and 
constant velocity of the top lid of the cavity. Benchmark 
solutions provided by Ghia et al [20] were brought in for the 
sake of results comparison.  

Fig. 2 show plots of stream function for the Reynolds 
numbers considered. It is apparent that the flow structure is in 
good agreement with the previous work of Ghia et al [20]. For 
low Re (

€ 

Re = 100 ), the center of vortex is located at about 
one-third of the cavity depth from the top. As Re increases, the 
primary vortex moves towards the center of cavity and 
increasing circular. In addition to the primary, a pair of 
counterrotating eddies develop at the lower corners of the 
cavity. 

            
                           (a)                                                 (b) 

Fig. 2 Plots of streamlines for (a) Re = 100 and (b) Re = 400. 
 

The two velocity components u and v along the vertical and 
horizontal lines through the cavity center together with the 
benchmark solution are shown in Fig. 3. Good agreement 
between the current approach and the benchmark solutions are 
observed. It is noted that, the proposed approach is able to 
capture the critical points for the case in hand. 
 

 
Fig. 3 Comparisons of velocity profiles between benchmark solutions 
(symbol) [20] and present method (solid lines) 
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Once we obtained confidence in our proposed method, we 

then extend numerical simulation by locating a solid particle 
in lid-driven cavity flow at shallow conditions. In the present 
investigation, we only consider one particle in a lid driven 
cavity and assume the presence of solid particle gives no 
effect to the fluid flow. The equation of motion for solid 
particle is written as 

 

€ 

mp
dv p
dt

= fp                                      (23) 

 
where 

€ 

mp , 

€ 

v p  and 

€ 

fp  are the mass of particle, its velocity and 
drag force acting on particle due to surrounding fluid 
respectively. According to Kosinski et al [17], the drag force 
can be written as follow 

 

€ 

fp =CDApρ
u − v p u − v p( )

2
                              (24) 

 
where 

€ 

Ap  is the projected area of solid particle and 

€ 

CD is the 
drag coefficient which is given as 

 

€ 

CD =
24
Rep

                                      (25) 

 
The particle’s Reynolds number in the above equation is 

calculated as follow 
 

€ 

Rep =
dp u − v p

υ
                                   (26) 

 
where 

€ 

dp  is the diameter of solid particle.  
In summary, the evolution of the scheme consists of three 

steps. Once the initial values of 

€ 

u , 

€ 

v p , 

€ 

mp and initial position 

of solid particle 

€ 

x p , y p( )  are specified, then the system evolves 
in the following steps. 

The drag force acting on solid particles is calculated from 
Eqn. (24). 

Since the pre-calculated value of 

€ 

v p
n  is known at previous 

time step, the new value of particle’s velocity 

€ 

v p
n+1 can be 

calculated from Eqn. (23) as follow 
 

€ 

mp
v p
n+1 − v p

n

Δt
= fp                     (27) 

 
Finally, the new position of solid particle can be determined 

as follow 
 

€ 

x p
n+1 = v p

n+1Δt + x p
n                     (28) 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 Plot of solid particle trajectories (Bold line) in a shallow lid-
driven cavity flow at aspect ratio 2/3 for a) Re = 100, b) Re = 400 and 
c) Re = 1000. 
 
 
Figs. 4 and 5 show the trajectories a solid particle suspended 
in two shallow cavities of 2/3 and 1/2. As can be seen from the 
figures, at low Reynolds number (Re = 100), the particle 
immediately spirals outwards the center on the cavity. 
However, for the simulation at higher Reynolds number (Re = 
400), the particle firstly make a small spiral near the upper 
right of the cavity and then gradually spiral outwards the 
center of the cavity. An interesting phenomenon can be seen 
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for the simulation at the highest value of Reynolds number 
and smaller aspect ratio in the present study where the particle 
eventually drifts and resides in the secondary and weaker 
vortex. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5 Fig. 4 Plot of solid particle trajectories (Bold line) in a shallow 
lid-driven cavity flow at aspect ratio 1/2 for a) Re = 100, b) Re = 400 
and c) Re = 1000. 
 

Fig. 6 shows the transient behavior of vortices in the cavity 
at aspect ratio of 1/2. The snapshots were taken at seven 
different dimensionless times; 1s, 2s, 3s, 4s, 10s, 30s, 60s and 
70s. As can be seen from the figure, the trajectories of the 
solid particle significantly affected by the structure of the fluid 
vortex. 

 

 

 

 

 

 

 

 
Fig. 6 Location of particle in the flow field at time (from top) 1s, 2s, 
3s, 4s, 10s, 30s, 60s, and 70s. 
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IV. CONCLUSION 
Numerical computations of solid particle flow in lid-driven 

cavity flow were performed using the coupled constrained-
interpolated profile method and Lagrangian scheme. The 
computed results were firstly validated by comparisons of the 
fluid structure and velocity profiles inside a square cavity. 
Then the simulations were extended by inclusion of a solid 
particle in a cavity at shallow conditions. Results from figures 
5 and 6 clearly indicate the influence of vortex structure on the 
particle’s trajectories in the cavity. These demonstrate the 
capability and the multidisciplinary applications of the present 
numerical scheme. 
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