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   Abstract -  The research considered here is related to the 

problem of orbital maneuvers. A satellite has to perform such 

maneuver to escape from a possible collision with a cloud of 

particles. To perform this task, a low thrust control is available. 

The question of minimizing the fuel consumption is considered 

and this is the most important goal in the maneuver. For this 

problem, the hybrid optimal control approach is used, where it is 

possible to take into account the accuracy in the satisfaction of 

the constraints. The spacecraft is considered to be traveling in 

Keplerian orbits perturbed only by the thrusts. These thrusts have 

a fixed magnitude and operating in an on-off mode. 

Several results are shown to exemplify the maneuvers simulated.  
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I.  INTRODUCTION 

 

The main idea explored in the present paper is to study 

the orbital maneuvers required by a spacecraft that needs to 

escape from a potential collision with a cloud of debris that 

was generated by an explosion of another satellite. It is 

assumed that the orbit of the satellite is given, as well as a 

nominal orbit for this satellite that allows it to escape from 

the described collision. This risk of collision is calculated 

based in the propagation of a cloud of particles that 

perform a close approach with a celestial body. Then, this 

passage generates a set of new orbital elements. With this 

information, it is possible to obtain a set of Keplerian 

elements that specify an orbit that is safe, regarding this 

possible collision. 

Then, it is necessary to maneuver this satellite from its 

current position to the nominal safe specified orbit, and 

then back to its original orbit after the cloud of particles 

complete its motion near the orbit of the spacecraft.      

The control available to perform this maneuver is the 

application of a low thrust to the satellite and the objective 

is to perform this maneuver with minimum fuel 

consumption. 
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An optimal approach will be used, to allow the 

maximum possible savings. There is no time restriction 

involved here and the spacecraft can leave from any point 

in the initial orbit. In the present paper, the stochastic 

version of the projection of the gradient method is used. 

This version allows us to include the fact that the 

constraints do not need to be exactly satisfied (see 

reference [1] and [2]). This is done to realistically treat the 

numerical inaccuracies and/or flexibility in terms of 

tolerance in mission requirements, leading to situations 

where the final state is constrained to lie inside a given 

region, instead of having an exact value.  

 

  II.  REVIEW OF ORBITAL MANEUVERS 

 

      One of the most important works done in this field is 

the one made by Hohmann [3]. He solved the problem of 

minimum V transfers between two circular coplanar 

orbits. The Hohmann transfer would be generalized to the 

elliptic case (transfer between two coaxial elliptic orbits) 

by Marchal [4].  

     Smith [5] shows results for some other special cases, 

like coaxial and quasi-coaxial elliptic orbits, circular-

elliptic orbits, two quasi-circular orbits. A numerical 

scheme to solve the transfer between two generic coplanar 

elliptic orbits is presented by Bender [6].  

       Another line of research studies the effects of the 

finite thrust, like the one used in the present paper, in the 

results obtained from the impulsive model. Zee [7] 

obtained analytical expressions for the extra fuel 

consumed to reach the same transfer and for the errors in 

the orbital elements and energy for a nominal maneuver (a 

real maneuver that uses the impulses calculated with the 

impulsive model). 

    Later, the literature studied the problem of a two-

impulse transfer where the magnitude of the two impulses 

are fixed, like in Jin and Melton [8]; Jezewski and 

Mittleman [9].  

 The three-impulse concept was introduced in the 

literature by Hoelker and Silber [10] and Sthernfeld [11]. 

They showed that a bi-elliptical transfer between two 

circular orbits has a lower V than the Hohmann transfer, 

for some combinations of initial and final orbits. After 

that, Ting [12] showed that the use of more than three 
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impulses does not lower the   V, for impulsive 

maneuvers. Roth [13] obtained the minimum V solution 

for a bi-elliptical transfer between two inclined orbits. 

Following the idea of more than two impulses, we have 

the work done by Prussing [14] that admits two or three 

impulses; Prussing [15] that admits four impulses; Eckel 

[16] that admits N impulses. 

 Some other researchers worked on methods where the 

number of impulses is a free parameter, and not a value 

fixed in advance. It is the case of the papers made by Lion 

and Handelsman [17], Jezewski and Rosendaal [18], Gross 

and Prussing [19], Eckel [20] and Prussing and Chiu [21]. 

Most of the research done in this particular case is based 

on the "Primer-Vector" theory developed by Lawden [22], 

[23]. 

 Another feature that was introduced in the orbital 

maneuvers is the concept of a swing-by. This is a 

technique that uses a close approach between the 

spacecraft and a celestial body to increase or decrease the 

energy of the spacecraft. References [24] to [27] describe 

this problem in more details. 

 

 III.  DEFINITION OF THE PROBLEM 

 

The basic problem discussed in this paper is the 

problem of orbit transfer maneuvers. The objective of this 

problem is to modify the orbit of a given spacecraft. In the 

case considered in this paper, an initial and a final orbit 

around the Earth are completely specified. The problem is 

to find how to transfer the spacecraft between those two 

orbits in such way that the fuel consumed is minimum. 

There is no time restriction involved here and the spacecraft 

can leave and arrive at any point in the given initial and 

final orbits. The maneuver is performed with the use of an 

engine that is able to deliver a thrust with constant 

magnitude and variable direction. The mechanism, time and 

fuel consumption to change the direction of the thrust is not 

considered in this paper. 

 

 IV.  MODEL USED 

 

The spacecraft is supposed to be in Keplerian motion 

controlled only by the thrusts, whenever they are active. 

This means that there are two types of motion: 

 

i) A Keplerian orbit that is an orbit obtained by assuming 

that the Earth's gravity (assumed to be a point of mass) is 

the only force acting on the spacecraft. This motion occurs 

when the thrusts are not firing; 

 

ii) The motion governed by two forces: the Earth's gravity 

field (also assumed to be a point of mass) and the force 

delivered by the thrusts. This motion occurs during the time 

that the thrusts are firing. 

 

The thrusts are assumed to have the following 

characteristics: 

 

i) Fixed magnitude: The force generated by them is always 

of constant magnitude during the maneuver. The value of 

this constant is a free parameter (an input for the algorithm 

developed here) that can be high or low; 

 

ii) Constant Ejection Velocity: Meaning that the velocity of 

the gases ejected from the thrusts is constant; 

 

iii) Free angular motion: This means that the direction of 

the force given by the thrusts can be modified during the 

transfer. This direction can be specified by the control 

angles u1 = α and u2 = β, called pitch (the angle between 

the direction of the thrust and the perpendicular to the line 

Earth-spacecraft) and yaw (the angle with respect to the 

orbital plane); 

 

iv) Operation in on-off mode: It means that intermediate 

states are not allowed. The thrusts are either at zero or 

maximum level all the time. 

 

Several numbers of "thrusting arcs" (arcs with the 

thrusts active) are tested for each maneuver. Instead of time, 

the "range angle" (the angle between the radius vector of 

the spacecraft and an arbitrary reference line in the orbital 

plane) is used as the independent variable, as used by Biggs 

[28], [29]. Figures 1 shows this situation. 

 

 
 

 

 

 
 

 

Fig. 1: Types of motion 
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 V.  OPTIMAL CONTROL FORMULATION 

 

 The minimum fuel spacecraft maneuver can be treated 

as a typical optimal control problem, formulated as follows. 

Objective Function: Let Mf, the final mass of the 

vehicle, to be maximized with respect to the control u(.); 

 

Subject to:       

 

x  = f(x,u,s);           (1) 

 

Ce(x,u,s) = Ee;         (2) 

 

Cd(x,u,s)  Ed;         (3) 

 

h(x(tf),tf) = Eh, t0 and x(t0) given       (4) 

 

where x is the state vector, f(.) is the right hand side of 

equations of motion, as in Biggs [29] and Prado and Rios-

Neto [30]; s is the independent variable (s0  s  sf), Ce(.) 

and Cd(.) are the algebraic dynamic constraints on state and 

control of dimensions me and md; h(.) are the boundary 

constraints of dimension mh; and Ee, Ed, Eh error vectors 

satisfying: 

 

|Eei|  Eei
T, i = 1, 2, 3, ..., me       (5) 

 

|Edi|  Edi
T, i = 1, 2, 3, ..., md       (6) 

 

|Ehi|  Ehi
T, i = 1, 2, 3, ..., mh       (7) 

 

where the fixed given values Eei
T, Edi

T, Ehi
T, 

characterizes the region around zero within which errors 

are considered tolerable. 

      To avoid singularities problems, we use the following 

variables. 

 

X1 = [a . (1-e2)/]1/2                                    (8) 

 

X2 = e . cos(-)                        (9) 

 

X3 = e . sin(-)                                                              (10) 

 

X4 = (Fuel Consumed)/m0                                               (11) 

 

  X5 = t                                     (12) 

 

X6 = cos(i/2).cos((+)/2)                     (13) 

 

X7 = sin(i/2).cos((-)/2)                                  (14) 

 

X8 = sin(i/2).sin((-)/2)                                 (15) 

 

X9 = cos(i/2).sin((+)/2)                                               (16) 

 

where: 

 

a = semi-major axis; 

e = eeccentricity; 

i = inclination; 

 = argument of the ascending node; 

 = argument of perigee; 

f = true anomaly; 

s = range angle; 

 = f + - s;                                 (17) 

 

 =gravitational constantl; 

m0 = initial mass of the spacecraft. 

 

    Using those variables we can study planar and circular 

orbits without any problem in terms of singularities. In 

those new variables, the equations of motion are shown 

below. 

 

dX1/ds = f1 = Si.X1.F1                     (18) 

 

dX2/ds = f2 = Si.{[(Ga+1).cos(s)+X2].F1+.F2.sin(s)} 

                                         (19)                            

 

dX3/ds = f3 = Si.{[(Ga+1).sin(s)+X3].F1 -.F2.cos(s)}     (20) 

 

dX4/ds = f4 = Si.f.F.(1-X4)/(X1.W)                                  (21) 

 

dX5/ds = f5 = Si.f.(1-X4).m0/X1                                 (22) 

 

dX6/ds = f6 = - Si.F3 .[X7.cos(s)+X8.sin(s)]/2                  (23) 

  

dX7/ds = f7 = Si.F3 .[X6.cos(s)-X9.sin(s)]/2                     (24) 

 

dX8/ds = f8 = Si.F3 .[X9.cos(s)+X6.sin(s)]/2                    (25) 

 

dX9/ds = f9 = Si.F3 .[X7.sin(s)-X8.cos(s)]/2                     (26) 

 

where: 

 

Ga = 1 + X2.cos(s) + X3.sen(s)                            (27) 

 

Si = ( .X1
4)/[Ga3.m0.(1-X4)]                                   (28) 

 

     Where  F, F1 , F2 , F3  are the forces generated by the 

thrust and they are given by: 
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321 FFFF


                                                         (29) 

      FF 


                                                                    (30) 

 

      )cos().cos(.1 FF                                         (31) 

 

      )cos().sen(.2 FF                                         (32)   

      

      )sen(.3 FF                                                       (33) 

 

The equations for the Lagrange multipliers are given below. 

      

dp

ds
p f p f p f p f Xj j

j

1
1 1 4 4 5 5 4

1

9

4    


[ . . . . . ] /
 

(34) 

      

dp

ds

s

Ga
p f p f p f S p F S s

p F p F S s sen s p F p F

j j i i
j

i

2
4 4 5 5 2 1

2

1

9

2 1 3 2 2 2 3 1

3    

  



cos( )
.[ . . . . ] . . .cos ( ).

.( . . ) .cos( ). ( ).( . . )
                      (35) 

 

      

dp

ds

sen s

Ga
p f p f p f S p F S s sen s

p F p F S sen s p F p F

j j i i
j

i

3
4 4 5 5 3 1

1

9

2 1 3 2

2

2 2 3 3

3    

  



( )
.[ . . . . ] . . .cos( ). ( ).

.( . . ) . ( ).( . . )

             (36) 

 

dp

ds
p f p f p f m Xj j

j

4
4 4 5 5 0 4

1

9

1    


[ . . . ] / [ .( )]
                                                                    

                                                                                         (37) 

 

dp

ds

5 0
                                                                         (38) 

 

 

dp

ds
S F p s p sen si

6
3 7 8 2  . .[ .cos( ) . ( )] /

            (39) 

 

dp

ds
S F p s p sen si

7
3 6 9 2 . .[ .cos( ) . ( )] /

               (40) 

 

dp

ds
S F p sen s p si

8
3 6 9 2 . .[ . ( ) .cos( )] /

              (41) 

 

dp

ds
S F p s p sen si

9
3 8 7 2  . .[ .cos( ) . ( )] /

           (42) 

  

        The control to be applied to the spacecraft also needs a 

transformation in order to avoid numerical problems. Then, 

we use the following set of variables. 

 

u1 = s0                                           (43) 

  

u2 = (sf - s0 ).cos(0 ) .cos(0 )                             (44) 

 

u3 = (sf - s0 ).cos(0 ) .sin(0 )                                   (45) 

 

u4 = (sf - s0 ).sin(0 )                                                (46) 

 

u5 =’                                      (47) 

 

u6 = ’                                                                      (48) 

 

       The optimal control can be obtained at every instant of 

time by extremizing the Hamiltonian of the system. This is 

an application of the first order necessary conditions of the 

optimal problem. The equations that represent this fact are 

given below. 

 

sin() = q2 / S’                               (49) 

 

sin(B) = q3 / S”                                       (50) 

 

 cos() = q1 / S’                                       (51) 

 

cos(B) = S’ / S”                        (52) 

 

where: 

 

S’ =  [ q1
2 + q2

2 ]1/2                                    (53) 

 

S” =  [ q1
2 + q2

2 + q3
2 ]1/2                     (54) 

 

q1 = p1.X1 + p2.[X2 + (Ga + 1).cos(s)] + p3.[X3 + (Ga + 

1).sin(s)]                                                                          (55) 

 

q2 = p2.Ga.sin(s) - p3.Ga.cos(s)                                  (56) 

 

q3 = - { p6.[X7.cos(s) + X8.sin(s)] + p7.[X6.cos(s) - X9 

.sin(s)] +  p8.[X6.sin(s) + X9.cos(s)] + p9.[X7.sin(s) - X8 

.cos(s)]}/2                                                                        (57) 

 

    There are several constraints that can be considered in 
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this type of problem. They can be represented by the 

equations shown below. 

 

      S ( . )  0                                    (58) 

 

      
 

0
*

0

*






aa

aa
                                                          (59) 

 

      
    
   

0
1.1.

1.1.
**

00

**






eaea

eaea
                               (60) 

 

      
 

0
*

0

*






ii

ii
                                                             (61) 

 

      
 

0
*

0

*





                                                        (62) 

 

     
 

0
*

0

*









                                                          (63) 

 

    Figure 2 shows some of the variables used to describe 

this problem. 

 

 

Fig. 2 -  Variables of the system 

 

 VI.  MATHEMATICAL METHOD 

 

     This approach is based on Optimal Control Theory 

(Bryson [31]). First order necessary conditions for a local 

minimum are used to obtain the adjoint equations and the 

Pontryagin's Maximum Principle to obtain the control 

angles at each range angle, leading to a "Two Point 

Boundary Value Problem" (TPBVP), where the difficulty is 

to find the initial values of the Lagrange multipliers. The 

treatment given here [29] is the hybrid approach of 

guessing a set of values, integrating numerically all the 

differential equations and then searching for a new set of 

values, based on a nonlinear programming algorithm. With 

this approach, the problem is again reduced to parametric 

optimization, as in the suboptimal method, with the 

difference that the angles' parameters are replaced by the 

initial values of the Lagrange multipliers, as variables to be 

optimized. 

     The method showed by Biggs [29] was used, where the 

"adjoint-control" transformation is performed and, instead 

of the initial values of Lagrange  multipliers,  one guesses  

control angles and their rates at the beginning of thrusting. 

With this, it is easier to find a good initial guess, and the 

convergence is faster. This hybrid approach has the 

advantage that, since the Lagrange multipliers remain 

constant during the "ballistic arcs", it is necessary to guess 

values of the control angles and its rates only for the first 

"burning arc". This transformation reduces very much the 

number of variables to be optimized and, as a consequence, 

the time of convergence. 

 

VII.  NUMERICAL METHOD 

  

    To solve the nonlinear programming problem, the 

stochastic version of the projection of the gradient method 

(Rios-Neto and Pinto [1]) was used. 

    Its general scheme is resumed in what follows: 

    Given a value p  of the searched vector of parameters p , 

from an initial guess or from an immediately previous 

iteration, a first order, direct search approach is adopted in 

a typical iteration to determine an approximate solution for 

the increment p  in the problem: 

 

 Minimize:      J(p  + p )                    (64) 

 

Subject to:    Ce(p  + p ) =  Ce(p ) + Ee      (65) 

 

Cd(p  + p ) =  Cd(p ) + Ed                                (66) 

 

where J(p ) is the objective function; Ce(p ) the equality 

constraints; Cd(p ) the active inequality constraints at p ; 

and 0   < 1, 0   < 1 are chosen close enough to one to 

lead to increments p  of a first order of magnitude. 

     Linearized approximations are taken for the left hand 

                   
Satellite 
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sides of Equations (65) and (66) together with a stochastic 

interpretation for the errors Ee and Ed, resulting in: 

 ( - 1)Ce(p ) = (d[Ce(p )]/dp ) p  + Ee                  (67) 

 

 ( - 1)Cd(p ) = (d[Cd(p )]/dp ) p  + Ed                  (68) 

 

where Ed and Ee are now assumed to be zero mean 

uniformly distributed errors, modeled as: 

 

E[EeEeT] = diag [ ei, i = 1,2,...,me] 

 

E[EdEdT] = diag [ di, i = 1,2,...,md] 

 

where E[.] indicate the expected value of its argument. 

 

     The condition of Equation (64) is approximated by the 

following "a priori information": 

 

-g. JT(p ) = p  + n                    (69) 

 

where g  0 is to be adjusted to guarantee a first order of 

magnitude for the increment, that is, such that p  is small 

enough to permit the use of a linearized representation of J(

p+p ); and n is taken as a zero mean uniformly 

distributed random vector, modelling the a priori searching 

error in the direction of the gradient J(p ), with: 

 

E[nnT] = P        (70) 

 

as its diagonal covariance matrix. The values of the 

variances in P  are chosen such as to characterize an 

"adequate order of magnitude" for the dispersion of n. The 

diagonal form adopted is to model the assumption that it is 

not imposed any a priori correlation between the errors in 

the gradient components. 

     The simultaneous consideration of conditions of 

Equations (67), (68) and (69) characterize a problem of 

parameter estimation, which in a compact notation can be 

put as follows: 

 

U  = U + n                       (71) 

 

Y = MU + V                     (72) 

 

where U   -g.JT(p ) is the "a priori information";  

U  p ; 

 

 Y  [( - 1)CeT(p ) : ( - 1)CdT(p )] is the observation 

vector; 

 

MT  [(d(Ce(p ))/dp )T : (d(Cd(p ))/dp )T]; VT = [EeT : 

EdT]. 

 

     Adopting a criterion of linear, minimum variance 

estimation, the optimal search increment can be determined 

using the classical Gauss-Markov estimator, which in 

Kalman form (e. g. Jazwinski [32]) gives: 

 

U  = U  + K(Y - MU )                    (73) 

 

P = P  - KMP                      (74) 

 

K = P MT(MP MT + R)-1                                 (75) 

 

where P  is defined as before; R  E[VVT] = diag [Rk, k = 

1,2,...,me+md]; and P has the meaning of being the 

covariance matrix of the errors in the components estimates 

of U, i. e.: 

 

P = E[(U - U )(U - U )T]                                 (76) 

 

     To build a numerical algorithm using the proposed 

procedure, the following types of iterations are considered: 

 

(i) Initial phase of acquisition of constraints, when starting 

from a feasible point that satisfies the inequality 

constraints, the search is done to capture the equality 

constraints, including those inequality constraints that 

eventually became active along this phase; 

 

(ii) Search of the minimum, when from a point that satisfies 

the constraints in the limits of the tolerable errors V, the 

search is done to take the objective function (Equation 

(64)) to get closer to the minimum; this search is conducted 

relaxing the order of magnitude of the error bounds around 

the constraints; 

 

(iii) Restoration of the constraints, when from a point that 

resulted from a type (ii) iteration, the search is done to 

restore constraints satisfaction, within the limits imposed 

by the error V. 

     Rios-Neto and Pinto [1] suggest how to choose good 

values for the numerical parameters that must be different 

for each type of iteration. 
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VIII.  SIMULATIONS AND NUMERICAL TESTS 

 

     To verify the algorithm proposed, two maneuvers of 

orbit transfer was simulated. These results were compared 

with the ones obtained by the deterministic version, without 

flexibility in the constraint's satisfaction. Similar 

simulations can be found in references [33] and [34]. This 

transfer phase will occur with the data given in Table 1. 

Some other information are: Initial mass: 170 kg; Thrust: 

4.0 N. 

 

Table 1 - Data for Transfer Phase of the Satellite 

 

Orbits Initial Final 

Semi-major axis  6800.00 7050.00 

Eccentricity 0.006 0.000 

Inclination (degrees) 10.00 10.00 

Ascending Node (degrees) 20.00 Free 

Argument of perigee (degrees) 0.00  Free 

Mean Anomaly (degrees) 0.00 Free 

 

 

Table 2 - Errors Allowed for Final Keplerian Elements 

 

Semi-major axis 4.0 Km  

Eccentricity 0.0005 

Inclination 0.01 deg 

 

     The choice of the number of "burning arcs" was done 

for several different values. 

     The consumptions found are showed in Table 3, as well 

as comparisons with deterministic methods. 

 

Table 3 - Fuel Expenditure Comparisons (kg) 

 

Approach Stochastic Deterministic 

2 Arcs 13.77 13.98 

3 Arcs 13.60 13.74 

4 Arcs 13.14 13.24 

5 Arcs 12.90 12.98 

6 Arcs 12.49 12.55 

7 Arcs 12.10 12.15 

8 Arcs 11.92 11.96 

 

 

     Then, a new maneuver is simulated. A smaller 

amplitude case is used, to simulate a short orbital 

correction. This maneuver will occur with the data given in 

Table 4. The same satellite used in the previous case is used 

again, so the initial mass is 170 kg and the thrust level is 

4.0 N. 

Table 4 - Data for Orbital Correction Phase of the Satellite 

 

Orbits Initial Final 

Semi-major axis  7000.00 7050.00 

Eccentricity 0.001 0.000 

Inclination (degrees) 10.00 10.00 

Ascending Node (degrees) 20.00 Free 

Argument of perigee (degrees) 0.00  Free 

Mean Anomaly (degrees) 0.00 Free 

 

 

Table 5 - Errors Allowed for Final Keplerian Elements of 

the Second Maneuver 

 

Semi-major axis 3.0 Km  

Eccentricity 0.0003 

Inclination 0.01 deg 

 

 

     The choice of the number of "burning arcs" was done 

for several different values. 

     The consumptions found are showed in Table 6, as well 

as comparisons with deterministic methods. 

 

Table 6 - Fuel Expenditure Comparisons (kg) for the 

second maneuver 

 

Approach Stochastic Deterministic 

2 Arcs 2.75 2.80 

3 Arcs 2.72 2.74 

4 Arcs 2.63 2.64 

5 Arcs 2.58 2.60 

6 Arcs 2.50 2.51 

7 Arcs 2.42 2.43 

8 Arcs 2.38 2.39 

 

 

IX.  CONCLUSIONS 

 

     Optimal control was explored to generate an algorithm 

to obtain solutions for the problem of minimum fuel 

consumption to make orbital maneuvers of a satellite that 

needs to perform this maneuver to avoid the risk of a 

collision with a cloud of particles. 

     This problem was considered taking into account the 

accuracy tolerance in the constraint's satisfaction using the 

new nonlinear programming algorithm proposed by Rios-

Neto and Pinto [1]. 

 

     The results showed that some fuel can be saved by 

exploring tolerable errors allowed for constraint's 
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satisfaction. The amount saved is not negligible. 

     It is also possible to see that the increase of the number 

of burning arcs can decrease the total fuel expenditure. This 

happens because this increase is accompanied by an 

increase of the number of variables available for the 

optimization technique.  
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